
Fast and Scalable Gate-level Simulation in
Massively Parallel Systems

Haichuan Hu1,2 Zichen Xu∗2 Yuhao Wang2 Fangming Liu1,3
1National Engineering Research Center for Big Data Technology and System,

Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

2School of Mathematics and Computer Science, Nanchang University, Nanchang, China
3Pengcheng Laboratory, Shenzhen, China

Abstract—The natural bijection between a proposed circuit
design and its graph representation shall allow any graph
optimization algorithm deploying into many-core systems ef-
ficiently. However, this process suffers from the exponentially
growing overhead and heavy memory footprint with the signal
propagation. To conquer the unique challenge, we systematically
study the simulation with millions of gates, and identify that
the processing complexity could grow exponentially from the
signal inputs, the skewness of the computational graph stays.
Thus, we present ZhouBi, a fast and scalable gate-level simu-
lation framework to fully exploit the parallelism from many-
core systems. ZhouBi contributes in threefolds, (I) a graph
representation that colors gate-level netlists and identifies skew
partitions based on the graph skewness; (II) A set of heuristic
algorithms that picks opportunistic and conservative algorithms
to accelerate the simulation; (III) A system facility that supports
selective mapping between simulation and many-core, providing
a tradeoff between the risk of concurrent simulation fail and
performance gain. We have prototyped ZhouBi and evaluated it
with practical baselines. ZhouBi can achieve a 27.6× performance
gain, as compared to the state-of-the-practice Veriwell without
compromising any correctness. Our framework supports large
graphs enabling scale-out gate-level simulations for chip design.

I. INTRODUCTION

Gate-level simulation plays an important role in designing
modern chips. A smooth and correct gate-level simulation
shall have a well-defined formal representation such that it
could improve the cost-effectiveness for the circuit simulation.
When the underlying circuit design scales, the complexity of
the simulation grows exponentially, requiring some significant
optimization efforts on both simulation software and support-
ing computing architecture. Some modern simulation tools
include, Iverilog [1], Veriwell [2], Cadence [3], etc.

These computationally expensive software suffer from in-
sufficient architecture support. It is desire to make a full use
of the existing hardware parallelism and high-efficiency com-
puting capability of the hardware [4]. However, the gate-level
simulation is a flow of operations with temporal and spatial
dependency. Naı̈vely distributing the simulation threads onto
a many-core system challenges the simulation correctness.

In old days, to better understand the problem, we use graph
to present the signal flow between gates [5]. In this graph
representation, nodes represent the computing units, i.e., logic
gates, and directed edges represent the logic dependencies in
the temporal/spatial order. The gate-level netlists inherently
have a bijective relationship with their graph representations.

The graph allows the gate-level netlist grow elastically by
adding/removing nodes. However, with a continuous input of
circuit signals, a static graph could be duplicated and expanded
in a temporal manner, leading a huge simulation graph with
millions of nodes and edges. The graph cardinality grows in
orders of magnitudes, compared to the original netlist graph,
making a challenge task to efficiently simulate a very large
gate-level graph. It is a challenge to improve the simulation
efficiency while preserve the simulation correctness in a graph
representation at scale out.

Accelerating the graph simulation is not a simple job per
se. In past decades, many researchers have investigated in
adopting parallelism from the underlying hardware. On one
hand, for a complete simulation, some conservative tech-
niques, such as the Chandy-Misra-Bryant (CMB) algorithm
and many variants [6]–[8], are proposed to parallelize the
simulation within a fixed multiplexing degree, according to
the number of CPU sockets and cores. These optimization
algorithms allow the multiple logical processes step forward
at the same pace and block at many specific checkpoints to
conservatively check the correctness within all time granular-
ity, thus providing the correctness guarantee but lacking of the
performance improvement potential. These techniques fail to
harness the benefit of modern many-core architecture.

Some recent approaches opportunistically explore similar
computational paths together in the graph [9]–[11]. These
speculative algorithms allow multiple logical processes to
proceed without considering the dependency between these
processes. If the processing hits the jackpot, one may complete
the whole simulation for many paths in the graph until it hits an
error. The error forces the whole process rollback to the last
correct checkpoint. These opportunistic algorithms advances
by skipping the null message passing overhead from the con-
servative algorithm, thus are scalable. Yet these opportunistic
algorithms suffer from the risk of a large overhead from
rollbacks. For example, when the netlist graph is dense, i.e.,
a strong connective graph, the risk of potential performance
degradation from rollback is unbounded. Thus, the optimiza-
tion asks for a scheduling, whether we can provide a leverage,
between the conservative and opportunistic algorithms, to
process a very large gate level simulation as a graph?

To understand this problem, we have performed a system
study on many simulation benchmarks, with a focus on the

performance on many-core systems. Our study reveals that
(1) different circuits have different sensitivities to the two
types of algorithms; (2) the ratio between a graph and its
core part, i.e., graph skewness, stays with the input growth
and is the invariable feature. The graph skewness is the sum
of all minimum numbers of edges of connected components
whose removal results in a planar graph [12], which further
indicates the degree of dependence in a sub graph and its
distribution. Based on the skewness, we further use the graph
perfectness to theoretically cap the maximum cardinality of
all sub graphs, thus better estimate the possible computational
cost. With these indicators, we could only perform conserva-
tive algorithms on strongly dependent partitions, i.e., cliques,
while opportunistically scale out on the weakly dependent
partitions with estimated budgets, such that we could ex-
ploit the skewness of the circuit graph and adopt a proper
computation part onto the underlying core(s). As such, we
build a fast and scalable simulation framework by mapping
graph partitions onto different algorithms and controlling the
computation resource management.

In this paper, we present ZhouBi, a fast and scalable graph-
represented simulation framework. ZhouBi achieves fast gate-
level simulation at scale based on three facilities: (1) ZhouBi
converts the synthesized gate-level netlist into a graph, and
partitions the graph based on the graph skewness; (2) ZhouBi
maps two algorithms, i.e., the conservative algorithm and the
opportunistic algorithm, onto partitions with different skew-
ness. (3) ZhouBi builds a system facility to assign each par-
tition run to a running core, and allocates sufficient resources
for conservative and opportunistic algorithms, respectively,
balancing device utilization and maximizing efficiency. In this
way, ZhouBi gains the benefit from both the conservative
and opportunistic algorithms, while gaining advantages from
modern architecture. We have prototyped ZhouBi as a gate
level circuit simulator and evaluated it with many real-world
benchmarks. Across different cases, ZhouBi exhibits a 27.6×
and 25.9× performance improvement, as compared to the
state-of-the-practice Veriwell [2] and iVerilog [1], respectively.
Our main contributions can be summarized as follows:

• We study the performance problem of gate-level simulation
using graph, and propose a framework ZhouBi to solve it.

• We identify the graph skewness and perfectness are key
metrics to partition the netlist graph and estimate related
cost, respectively.

• We schedule conservative and opportunistic algorithms
based on graph skewness, harvesting merits from both
algorithms and providing a tradeoff in-between.

• We carefully implement ZhouBi to deploy the two parallel
versions of algorithms onto many-core systems, providing a
holistic solution.

• We have evaluated ZhouBi with standard benchmarks, and
show it can achieve a 27.6× performance gain.

The remainder of this paper is organized as follows. Sec-
tion II highlights the background and our motivation on the
gate-level simulation. Section III describes ZhouBi system

� � �
 � � � � � � � � � � � 	
 � � � � � � � �
�

� �

� �

� �

� �

	 �

��

�	
��

��
��

��

��
�

�

� � � �
� 	
 � � � � � � � � � � � � � � �
� 	
 � � � � � � � � �

(a) Performance
� � 	 	 � � � � � � � � � � �
 � � � � � � � � � �

� � �

� � �

� � 	

� � �

� � �

� � �

�
��

��

�

���
�

�	
�

� � � � �
� � �

(b) Resource Utilization

Fig. 1. Performance and resource utilization of the two simulation algorithms.

design. Section IV empirically studies ZhouBi performance.
Section V provides a brief on the related work. At last,
Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

In the aforementioned problem statement, we highlight that
it is necessary to better understand the simulation graph of
the gate-level netlist, or netlist graph, to help us better select
the right simulation algorithm upon, while mapping it to the
correct computation resources. In this section, we conduct such
studies and collect our observations from a graph perspective.

A. Affinity of Parallel Simulation Algorithms

The circuit parallelization is not a simple task, as the
circuit has a complex correlation between gates. Previous
work shows that there are generally two ways to ensure the
consistency of the results in circuit parallel simulation: 1)
the conservative algorithm, represented by CMB algorithm
[6]; 2) the opportunistic algorithm, represented by TimeWarp
(TW) algorithm [11]. The graph sparsity leads to different
sensitivities to the two algorithms. We select a sparse graph
and a dense graph on the classic IWLS benchmarks [13] to
explore the affinity of the two original algorithms, as shown in
Figure 1. We assign two CPU cores to simulate one thousand
iterations of s1494 and two hundred iterations of s35932. We
find that, for sparse graph s1494, the opportunistic algorithm
performs better; for dense graph s35932, the conservative
algorithm performs better. These two types of algorithms
are like two poles on the number line. The conservative
algorithm guarantees correctness of the simulation, but at the
expense of possible speedup, that is, the CPU utilization is
low. The premise of the opportunistic algorithm is the shortest
path based on graph theory. Each logical unit is simulated
independently first, and the rolling back mechanism is required
for the occurrence of errors. The denser the graph is, the
greater risk of failures thus rolling back. Therefore, it prompts
us to design a trade-off mechanism that allows us to take full
advantage of both opportunistic and conservative algorithms
using graph theory.

B. Signal Propagation in Simulation Graph

There is a natural bijection relationship between the gate-
level circuit and the graph representation, many scholars
naturally apply any graph simulation algorithm to the circuit
simulation after graph representation [14]–[16]. However, the

Signal Frame: t0, t1

Signal
Propagation

Signal Frame: t0 Signal Frame: t1

Signal
Propagation

Fig. 2. An example of the signal propagation.

circuit simulation performance of graph representation is gen-
erally limited by the following two aspects: 1) the exponential
growth of the simulation excitation signal [17]; 2) the graph
structure represented by the graph is different from other
common information storage, which is particularly resource-
consuming [18]. The simple input signal becomes a shackle to
graph-based gate level simulation. For example, as shown in
Figure 2, the original gate level circuit graph has only 4 nodes
and 9 pins. However, the input signals make the original graph
generate many simulation copies. With the input signal pulse
over time, the number of pins in the circuit graph increases
linearly with the number of frames of the input signal. When
the number of frames of input signal is n, the scale of the
original graph could be expanded by n times, and the complete
simulation graph with 4n nodes and 9n pins could be obtained.
Studies have shown that for a combinational gate level circuit
with Nin primary inputs, Nout primary outputs, and Ng logic
gates, the number of test patterns required is 2Nin+Ng in
exhaustive simulation [19]. The size of the circuit expands
linearly with the input of the signal. The total complexity is
then O(Nt× 2Nin+Ng), where Nt is the number of excitation
signal frames. The time complexity of simulation increases
exponentially with the growth of the graph size.

C. Invariable Features of Circuit Graph

In terms of graph structure, the scale of the input signal
graph changes, but some structural features of the graph
remain unchanged: graph skewness and graph perfectness. The
key reason behind why we cannot always opportunistically
perform a TimeWarp algorithm for simulation is that some
connected components in the graph are dense such that signal
dependence in-between could be complicated. In this case,
any misses in such dense subgraph could lead to catastrophic
failure. These full-connected components are complete graphs,
or cliques. To identify the number of the maximum clique in a
graph, we adopt the concept of graph skewness, as the sum of
every minimum number of connected component edges to a
planar graph [12]. As circuit graph grows with the signal input,
such skewness stays no change as the definition. This provides
a unique feature of identifying the basic simulation unit for
parallel processing. The clique serves as one encapsulated
node in shrinking the scale of the graph, as shown in Figure 3.

To better understand the graph representation of gate-
level netlist, we perform a system study on several standard
benchmarks, such as IWLS benchmarks [13], EPFL bench-
marks [20], and a decoder whose structure is similar to the

Chromatic Number: 3
Clique Cardinality: 3

Partition

Graph
Representation

Omit Edge
Directions

K-chromatic GraphTask GraphGate-level Netlist

Task Graph

Partition 2

Partition 1 1

3

Task Graph

1

3

5

2

Simulation Order

Simulation

With 2 Cores
Only 62.5%

core utilization

Fig. 3. Cliques and their cardinalities in the system study.

Viterbi Decode [21]. The graph statistics of these benchmarks
are shown in Table I, featuring the graph skewness and
perfectness. Though the cardinality of the graph varies, the
two ratios can be calculated without scaling with the graph
cardinality. The skewness feature is our knob to select a
more suitable algorithm for specific graph partitioning. The
graph perfectness tells the ratio between the largest chromatic
number and the clique number. This is the bound of all
dense sub graphs that are not suitable for an opportunistic
simulation, thus the bottleneck of the computation (more
details are discussed in Section III). In the next section, we
further illustrate the design and implementation of ZhouBi.

III. DESIGN AND IMPLEMENTATION

ZhouBi is a fast and scalable graph-represented simulation
framework. The acceleration obtained with ZhouBi is achieved
in a two stage approach. At the offline stage, ZhouBi inputs the
gate-level netlist, converts it into a graph, omits the direction
info and obtains a undirected graph. Further, ZhouBi computes
the maximum chromatic number in all connected components
in this undirected graph, and collects maximum cliques, i.e.,
every two distinct vertices in this subgraph are adjacent,
at all chromatic levels. By computing the max cliques, the
process identifies the skewness of the graph, and partitions
the graph accordingly, sorted by the chromatic number. At
the online stage, a scheduling module in ZhouBi revokes the
graph representation with direction info, picks the conservative
CMB algorithm for simulations in clique, then performs the
TimeWarp algorithm to combine simulation between cliques.
In this way, ZhouBi shuffles the computation from each
clique and maps it onto different active cores. All results
are simulated and broadcast in a cone-like partition broadcast
since the signal dependence between cliques are weak. The
ZhouBi architecture is shown in Figure 4. ZhouBi aims at
gate-level simulation with the following assumptions:
• ZhouBi focuses on simulating gate-level netlist at scale

using a generic graph representation with skewness.
• ZhouBi aims at higher level models, thus assuming there

is no parasitic effect such as noise and crosstalk in the
simulation.

• Without loss of generality, ZhouBi assumes the delay be-
tween input signal is a constant.
In this section, we introduce our design and implementation

of ZhouBi. We discuss how ZhouBi recursively schedules
different simulation algorithms to the right subgraph structure.
Note that, as aforementioned in our study, most circuits exhibit
a feature of small cliques. Thus, we partition the graph into
small cliques, perform simulation, and merge/reduce them
recursively. The CMB algorithm provides a bounded per-
formance with correctness guarantee. We further provide an

Netlist

Profiling Graph
Task Nodes

Relation Edges

Clique Partition

Cone Partition

S
ch

e
d

u
lin

g

CMB-P

Offline Graph Analysis

Partition and SchedulingOnline Simulation

TimeWarp-P

Skewness & Perfectness

Task Graph

Cliques

Cones

Fig. 4. The system overview.

extended version of CMB, called CMB-P, in ZhouBi to exploit
the many-core feature of the underlying architecture. Similarly,
for the simulation in cone, ZhouBi also provides a parallel
version of the TimeWarp algorithm, known as TimeWarp-P, to
fully utilize the existing cores and memory space, matching
graphs with different sizes of signal propagation. At this stage,
the error rate of the TimeWarp algorithm is very low, as
discussed in Section IV. However, even if an error happens and
leads to a rollback, the simulation rolls back to the checkpoint
from the last clique, thus the rollback distance is much shorter
than the original TimeWarp algorithm. Next, we start from the
offline stage graph modeling and analysis in ZhouBi.

A. Offline Graph Analysis

This section describes the transformation of a netlist into a
task graph. We expand the content from two aspects: graph
representation, skewness and perfectness.
The Graph Representation. ZhouBi digests the gate-level
netlist from the output of RTL synthesis. The marco and cell
in the netlist is automatically convert into a task vertex set
V , while the connectivity info is transferred into a relation
edge set E. Each node in the vertex set is called a task node,
representing the function and location of one specific gate. The
graph structure does record message passing direction info.
However, in this first part of offline analysis, we reserve this
direction. In order to find a suitable set to partition the graph
G, based on the observations above, we compute the skewness
and perfectness as the graph feature.
Skewness and Perfectness. The graph skewness µ(G) is
defined as the sum of all minimum numbers of edges of
connected components whose removal results in a planar
graph [12]. Though the graph cardinality grows with the
size of input signals, this skewness stays. Converting a plain
graph to a planar one, the process is the same as finding
maximum cliques in the plain graph, as known as computing
the chromatic number of the target graph [22]. We use an
improved coloring algorithm [23] to find all cliques with
Vclique ≥ 3. The graph skewness µ(G) is defined as

µ(G) =

∑n
i=3 iNci

|V |
(1)

Omit Edge
Directions

1

1

2

Clique
Partition

Restore Edge
Directions

Clique A 2

Clique A Clique B

Super Edge

Clique B ×
Directed GraphUndirected GraphDirected Graph

Fig. 5. Clique partition in ZhouBi.

where Nci represents the number of i-clique. Note that, this
process is offline, clique exploration would not affect the
performance of the recursive simulation online. The perfect
graph is a graph whose the chromatic number of every induced
subgraph equals the clique number. The graph perfectness
p(G) is defined as

p(G) =
ω(G)

χ(G)
(2)

where ω(G) represents the clique number of G, and χ(G)
represents the chromatic number of G. We use p(G) to
estimate the size of possible conservative algorithm runs,
which serves the worst case theoretical resource estimation.

B. Partition and Scheduling

Based on the skewness µ(G) and perfectness p(G), we start
to partition the target graph, with the number of cliques found
in the offline analysis.
Clique Partition. For each clique identified at the offline
stage, we encapsulate the clique as a merged node in the
graph, thus shrinking the cardinality of to-be computed graph.
The maximum clique problem is finding the complete graph
with the most vertices in an undirected graph. If two cliques
intersect, we let the larger clique keep the overlapping nodes,
and reduce the other clique into a smaller size. When the two
intersecting cliques are the same size, it is necessary to judge
the relationship between adjacent nodes. As shown in Figure 5,
the encapsulation option with fewer communication times is
adopted, i.e., Option A. During this process, we encapsulate
small cliques, which appears to be a new node in the graph.
These new nodes sufficiently fit into a thread thus we could
process them parallelly.
Cone Partition. Another important partition is to prepare the
critical path for the optimistic TimeWarp algorithm. We use
the classic cone partition algorithm [24] to divide the graph
from a set of nodes from the same level. First the primary
input nodes are stored in a list. Traverse the list and perform
a depth-first traversal on each primary input node in the list,
and each node traversed retains a label of the primary input
node to indicate which unit it belongs to. Thereby dividing
the task graph into multiple cone-shaped partitions. In most
cases, there inevitably are overlapping nodes between adjacent
partitions. The overlapping parts between cones are organized
by comparing by a ratio ρ = s

u , where the s is the number of
nodes and the u is the total number of inputs and outputs. The
larger the ρ of the cone unit is, the better. Each cone partition
serves independently in the later parallel computation.

Conservative CMB

LP

LP1

LP2

LPn

LP1

LP2

LPn

Opportunistic TimeWarp

LP1

LP2

LPn

LP1

LP2

LPn

Roll Back

Pick

Pick

Task Graph Scheduling

Cone Cone ×

Tn Tn+1

Fig. 6. Task scheduling in ZhouBi.

Sequential
Extension

n Simulation Step

Signal: t0, t1, ……, tn

k = 2

Signal: t0

Signal: t1

Signal: tn-1

Signal: tn······

n/2 Simulation Step

Fig. 7. Signal propagation in unlooping.

Scheduling. This component is based on the partial order rela-
tionship of the nodes in the graph to determine the priority of
the node simulation sequence in the task graph. As described
in the previous section, the strongly dependent part is encap-
sulated into clique, and the relationship between the newly
generated clique and the remaining nodes is weakly dependent.
However, the simulation sequence and parallelizability of
nodes are still fuzzy. Therefore, we need to set the simulation
priority of the clique and the simulation priority of the logic
gate inside the clique. Nodes without precursors are used as
primary input nodes and also as the first layer of simulation
priority layer. And their successor nodes form the second level
priority queue. And so on, the final result is a two-dimensional
priority queue. In the simulation process, the two-dimensional
priority queue advances the simulation process layer by layer,
and the nodes at the same level of priority can be simulated
in parallel. Based on all results from preprocessing above, the
ZhouBi software defines logic process to perform simulation in
a direct mapping. Each node in a cone may contain one clique
or single node. All nodes at the same level from different
cones can be processed simultaneously. We perform a CMB
algorithm for simulation in nodes. As introduced later, our
CMB algorithm is extended to map nodes from the same level
to the suitable CPU core and associated memory chunk, thus
the performance is further improved in a fine-grained manner.
The simulation between nodes in the different cone adopts the
opportunistic TimeWarp algorithm. This TimeWarp algorithm
starts only when all nodes in the same cone have completed
their local simulation after shuffling. The computation between
neighbor cones are processed independently as they have a
weak dependence in-between. Cones far apart can be directly
mapped into cores, running individually. Such scheduling is
simple and effective, as shown in Figure 6.

C. Online Simulation in Parallel

Cost Estimation in Propagation. To further improve the
simulation performance, ZhouBi unloops the input signal

Algorithm 1: The ZhouBi Simulation Algorithm
Input : Cone unit list uList;

Unlooping Frequency k;
Output : Simulation results list rList;
Parameter: Cone unit u; Clique c; Current time Ci;

New message e; Message time te; Max
time T ; Gate g; Input signal of gate ig;

1 foreach u do /* TW-P Map */
2 sequentialExtend(k);
3 while Ci < T do
4 revNewMessage()→ te;
5 if te < Ci and result is wrong then
6 rollBackTo(te) → Ci;

7 while clique layer is not None do
8 foreach g with same priority in c do

/* CMB-P Threads activate */
9 collectInput(ig);

10 g.updateSignal(ig);
11 g.evaluate(); /* CMB-P Join */
12 if c needs to send e to another u then
13 add output to send queue;

14 foreach e do /* TW-P Shuffle */
15 sendNewMessage(e);

16 gatherResults()→ rList; /* TW-P Reduce */

sequence along the time to make the size of tasks loaded
on each core in the many-core system adapt to the current
computing force, as is shown in Figure 7. For example, when
the unlooping frequency k is 2, the timing signals requiring n
steps can be completed in n/2 steps. ZhouBi could estimate
the footprint of the clique m based Equation (3).

m =
c× k × n× p× 1KB

P (G)
(1 ≤ k ≤ a) (3)

where n is the cardinality of the clique, p is the number of
input pins, k is the frequency of unlooping, a is the index
number of testbench received by the clique, and c is a user-
defined coefficient, P (G) is graph perfectness. We use P (G)
to estimate the total resource demand for each simulation, and
k to maximize each chunk of resource assigned.
Simulation inside Cone Units in Parallel. The nodes with
strong internal data dependence formed after clique partition
are contained in the cone unit. Besides, the number of nodes
in the cone unit is smaller than that in the whole graph,
so the granularity of node synchronization in the cone is
smaller. We improve the original algorithm in a thread-level
parallel optimization and combine with sequential extension
inside clique to propose an optimized CMB-P algorithm. As
shown in Algorithm 1 (Line 8-Line 12), iterate over the
clique list and the simulation progress is promoted layer by
layer according to clique’s priority. We omit core information
from the kernel, store it in a chain, and assign them to each

individual step, mainly in three stages: (1) Assign cores to
simultaneously collect the external input received by nodes
with the same priority (Line 9); (2) Place the input signal
on the corresponding pin concurrently (Line 10); (3) Perform
simulation at the same layer (Line 11). Compared to the
CMB, the CMB-P, on the basis of the strong consistency of
the simulation results, is improved in two aspects: 1) The
simulation inside clique is divided into three more fine-grained
steps, each step can be executed in parallel, which improves
the parallelism of the simulation in the spatial domain; 2)
The internal structure of the clique is extended to increase
the throughput of the signals, which improves the parallelism
of simulation in the time domain.
Simulation between Cone Units in Parallel. We improve the
original TimeWarp algorithm by combining with the priority
queue and get the TimeWarp-P (TW-P) algorithm, as shown
in Algorithm 1. We use the TW-P algorithm to opportunis-
tically travel each shortest path in the cone partition for the
performance improvement. We parallelize this process in a
Map Reduce manner. When all nodes are computed using the
CMB-P algorithm above, each cone is mapped into a process
and shuffled during the processing until ZhouBi detects the
required communication between cones. Recursively, the TW-
P algorithm in each cone is reduced one single output. All
output files are merged in the later stage while nodes and
edges are combined. The process level parallel is performed
in these three stages: (1) Check new messages arrival and
proceed the simulation along the path layer with the simulation
priority queue (Line 4-Line 6); (2) Fetch the simulation inside
the clique (Line 9-Line 13); (3) Message communication in
a shuffle (Line 14-Line 15). Compared to TimeWarp, the
TimeWarp-P, on the basis of the inherent parallelism guar-
antee, is improved in two aspects: 1) Combining with the
priority queue, it further improves the efficiency of the cone
path exploration and improves the data concurrency; 2) While
coarse-grained synchronization, it provides the opportunity to
combine with fine-grained synchronization algorithm to reduce
the frequency of rollbacks to some extent.
Time Complexity Analysis. Compared to traditional simu-
lation algorithms as mentioned in II-B, ZhouBi transforms
the microtasks, represented by individual gates, into the
macrotasks, represented by cliques. This approach reduces
the dimensionality of the entire simulation and occurs in two
aspects: 1) Structurally, where individual gates in the circuit
are packed into cliques; 2) Temporally, where the timing
signals of the whole simulation are unlooped and expanded on
cliques, allowing multiple timing signals to be simulated in a
single simulation step. As a result, ZhouBi’s time complexity
becomes O(Nt

k ×(
Nc1

1 +. . .+
Nci

i)), where Nt is the number of
excitation signal frames, k represents the unlooping frequency,
Nci represents the number of i-clique.

IV. EVALUATION

In this section, we prototype ZhouBi and evaluate its
performance on classic benchmarks.

TABLE I
PERFORMANCE COMPARISON ON BENCHMARKS [13], [20], [21].
Benchmark # Nodes # Cones # Nodes-MC # SK # PF # S2V # S2I

s1494 690 10 216 0.00 0.40 24.2× 22.8×
s13207 8651 62 2489 0.07 0.75 23.9× 21.6×
s35932 17828 35 3823 0.30 0.75 20.6× 18.7×

multiplier 27318 128 5891 0.25 0.60 20.3× 18.5×
decoder 33000 2000 10047 0.91 1.00 18.4× 16.7×

log2 32124 32 6652 0.17 0.43 26.0× 24.4×
leon3mp 545836 148 72154 0.14 0.43 27.6× 25.9×

leon2 780456 126 92614 0.03 0.38 25.7× 23.5×
leon3-avnet-3s1500 899632 109 104890 0.22 0.43 25.8× 24.2×

Nodes: node number # Cones: cone number # Nodes-MC: node number
in the max cone # SK: graph skewness # PF: graph perfectness

S2V: speedup compared to Veriwell # S2I: speedup compared to Iverilog

A. Empirical Setup

We have prototyped ZhouBi as a gate-level simulator and
evaluate it with benchmarks described in Section II. We
compare ZhouBi performance with some state-of-the-practice
(SOTP) benchmarks, such as Iverilog [1] and Veriwell [2].
We adapt a machine with 24 Intel Xeon 6126 cores at 2.60
GHz and a 256 GB RAM (CentOS v7.6). Using the hyper-
threading technology [25], we virtualize 48 logical cores from
24 physical cores to improve CPU execution efficiency. We
compile all programs using GNU GCC-6.5.0 with C++11
standards -std=c++11 and optimization flags -O2 enabled. In
the specific implementation of parallel simulation, we use
multi-thread to conduct internal simulation inside cones by
thread library based on C++11 standard and multi-process to
conduct simulation between cones by using MPI Framework
OpenMPI 3.1.6 [26]. The following simulation time does
not include the preprocessing time for the dissociation graph
analysis of the benchmarks.

B. Performance Comparison

Table I lists the benchmark statistics and the overall perfor-
mance comparison between ZhouBi with two classic Verilog
simulators. We measure the simulation time of completing
ten thousand iterations of the testbench on the benchmarks.
We run our own gate simulator using the maximum hardware
concurrency of 48 logical cores on our platform. The average
CPU utilization of all benchmarks is above 95%. ZhouBi
is faster than Veriwell and Iverilog across all benchmarks,
which is shown as Table I. The three largest speedup values
we observed are 27.6× compared to Veriwell and 25.9×
compared to Iverilog on leon3mp, 26.0× and 24.4× on log2,
and 25.8× and 24.2× on leon3-avnet-3s1500.

C. Overall Performance Statistics and Discussion

To better evaluate ZhouBi, we test the performance of each
module individually as well as the performance of modules
stacked on top of each other. The simulation results by
using 6 different simulation baselines, specifically including
the serial simulation (Serial), the CMB simulation (CMB),
the TimeWarp simulation (TW), improved CMB-P simulation
(CMB-P), improved TimeWarp-P simulation (TW-P), com-
plete simulation algorithm (ZhouBi). The overall performance
of the benchmarks is shown in Figure 8. The performance of
the improved algorithm is many times higher than that of the
original algorithm.

0.7

1.4

2.1

2.8

3.5

 1 2 4 8 16 32 48

Si
m

ul
at

io
n

Ti
m

e
(s

)

Number of Cores

Serial
CMB
TW

CMB-P
TW-P

ZhouBi

(a) s1494

1.9

2.5

3.1

3.7

4.3

 1 2 4 8 16 32 48

Si
m

ul
at

io
n

Ti
m

e
(s

)

Number of Cores

Serial
CMB
TW

CMB-P
TW-P

ZhouBi

(b) s13207

2.2

2.7

3.2

3.7

4.2

4.7

 1 2 4 8 16 32 48

Si
m

ul
at

io
n

Ti
m

e
(s

)

Number of Cores

Serial
CMB
TW

CMB-P
TW-P

ZhouBi

(c) s35932

2.4

3.0

3.6

4.2

4.8

 1 2 4 8 16 32 48

Si
m

ul
at

io
n

Ti
m

e
(s

)

Number of Cores

Serial
CMB
TW

CMB-P
TW-P

ZhouBi

(d) multiplier

2.6

3.4

4.2

5.0

 1 2 4 8 16 32 48
Si

m
ul

at
io

n
Ti

m
e

(s
)

Number of Cores

Serial
CMB
TW

CMB-P
TW-P

ZhouBi

(e) decoder

2.3

2.9

3.5

4.1

4.7

 1 2 4 8 16 32 48

Si
m

ul
at

io
n

Ti
m

e
(s

)

Number of Cores

Serial
CMB
TW

CMB-P
TW-P

ZhouBi

(f) log2

3.4

4.0

4.6

5.2

5.8

 1 2 4 8 16 32 48

Si
m

ul
at

io
n

Ti
m

e
(s

)

Number of Cores

Serial
CMB
TW

CMB-P
TW-P

ZhouBi

(g) leon3mp

 3.5

 4.2

 4.9

 5.6

 1 2 4 8 16 32 48

Si
m

ul
at

io
n

Ti
m

e
(s

)

Number of Cores

Serial
CMB
TW

CMB-P
TW-P

ZhouBi

(h) leon2

3.6

4.2

4.8

5.4

6.0

 1 2 4 8 16 32 48

Si
m

ul
at

io
n

Ti
m

e
(s

)

Number of Cores

Serial
CMB
TW

CMB-P
TW-P

ZhouBi

(i) leon3-avnet-3s1500
Fig. 8. The overall performance of the benchmarks. Y axis is on a log10 scale.

TW-P
CMB-P

Graph Skewness
10

Speedup

Sparse Graph Dense Graph
0.14

ZhouBi

0.30

×
×

×
×

××

××
×× × ×

×
×

×
××

×
××

××

0.91

×

×

×

×
×

10

15

20

5

25

Fig. 9. The ZhouBi performance at different skewnesses.

Impact of Graph Skewness on Performance. The graph
skewness is the key factor affecting the simulation perfor-
mance, which is shown in Figure 9. The results show that (1)
CMB-P algorithm is good at handling fine-grained tasks with
strong data dependencies. As the graph becomes denser, there
are more cliques in the graph. Benefiting from the parallel
optimization brought by the sequential extension inside the
clique, the performance gradually improves, but it still cannot
fully utilize the inherent parallelism of simulation. (2) The
TW-P opportunistic algorithm is good at handling coarse-
grained tasks with weak data dependencies. When the graph is
sparse, the data dependencies in the graph are weak, and the
probability of rolling back is very low. However, as the graph
becomes denser, the causal constraints in the graph increase,
resulting in a higher probability of rolling back. A lot of
failures of rolling back can cause a lot of extra overhead,
resulting in performance degradation. When the skewness
reaches a certain degree, for example, skewness reaches 0.3,

� � � � � �
� � �

� � �

� � �

� � �

� � �

� � �

��

�	
��

��
��

��

��
�

�

�
 	 � � � �
�
 	 � �
�
 	 � � � � � � 	 � � � � � � � �

(a) Unlooping Frequency
� � � � � � �

� � �

� � �

� � �

� � �

� � �

��

�	
��

��
��

��

��
�

�

� � �
� � � � �
� � �
 � � 	

(b) Cone Number

Fig. 10. Performance impact of unlooping frequency and cone number. Y
axis is on a log10 scale.
the simulation performance is even worse than that of CMB-P
conservative algorithm. (3) ZhouBi weighs the merits of CMB-
P versus TW-P, scheduling CMB-P for fine-grained tasks with
strong data dependence and TW-P for coarse-grained tasks
with weak data dependence. In most of graphs with uneven
skewness, ZhouBi outperforms CMB-P and TW-P because
ZhouBi has both the performance improvement of TW’s high
concurrency and the advantage of conservative algorithm to
reduce the rollback rate. In dense graph decoder, i.e. the
skewness of the circuit is 0.91, the performance of ZhouBi
converges to the CMB-P.
Impact of Unlooping Frequency on Performance. The
unlooping frequency determines the number of signal sim-
ulation within a single simulation step of the clique, which
is used to increase the parallelism of signal simulation in
time sequence. We allocate different unlooping frequency
to each clique of 3 industrial circuits to explore its impact
on performance. The result is shown in Figure 10a. As the

unlooping frequency per clique increases, the simulation time
of each case decreases first and then increases. When the
frequency of unlooping is low, the throughput of input signal
per clique in a single simulation step is small, which results
in the insufficient utilization of the computing power of the
core. As the frequency of unlooping increases, the throughput
of input signal per clique gradually matches the computing
power supported by the underlying many-core system, and
the performance gradually improves. When the frequency of
unlooping continues to increase and the throughput of input
signal per clique exceeds the range of the computing power
per core, the simulation performance declines.
Impact of Load Balance between Cone Units on Perfor-
mance. The load size in the cone unit, i.e., the number of
nodes in cone unit, is an important factor affecting the simu-
lation performance between cones. We test on the log2. The
circuit is partitioned according to the primary input number
and 32 cone units are obtained. Then, adjust the load balance
between cone units by combining the adjacent cone units.
The result is shown in Figure 10b. With the increase of the
number of final cone units, the simulation time decreases first
and then increases. The minimum simulation time is reached
when the number of cones is 8. When the number of the cone
units is small, the concurrency between cone units is low and
the simulation performance is weak. When the number of the
cone units increases excessively, the communication overhead
between cones increases, which leads to some noticeable
performance degradation. Load balance between cone units
is required to achieve better performance.

V. RELATED WORK

ZhouBi is a framework designed for improving the simula-
tion performance by scheduling tasks into many-core systems
under the premise of graph theory-guided netlist partition.
Related works with similar features to ours are as follows.
Netlist Partition. The quality of netlist partition directly
affects the simulation performance. Zheng et al. [27] propose a
multi-level topology-driven partitioning framework for FPGA
systems to deal with topological constraints in the system.
Scarabotlo et al. [28] propose a new partitioning algorithm for
gate-level error determination. The core idea of the algorithm
is to partition according to the impact of each gate on the final
output. These heuristic partitioning algorithms are difficult to
trade off between partition communication and load balancing.
In recent years, partition methods based on deep learning have
also emerged. Lu et al. [29] propose a partitioning framework
based on graph neural network (GNN). However, GNN-based
methods need to design too many parameters, resulting in high
computational complexity.
Many-core System. The operation of circuit simulation is
strongly data-dependent and cannot be directly mapped to
multi-core hardware to fully utilize computing resources. In
order to improve the concurrency of data during simulation,
Zeng et al. [30] propose a method for logic re-simulation
on multi-core hardware via gate/event parallelism and state
compression, enabling 2D parallelism by grouping gates

and splitting events. Lai et al. [31] propose a new hybrid
contention-tolerant parallel logic simulation algorithm to fully
utilize the parallel capability of hardware. However, these
parallel optimization schemes are all based on conservative
strategies, ignoring the optimization opportunities brought by
the opportunistic strategies.
Hybrid Synchronization. Conservative and opportunistic
strategies have their own advantages. Eker et al. [32] propose
a simulation synchronization scheme, which can dynamically
switch between conservative and opportunistic strategies ac-
cording to the features of the runtime. The essence of the
studies is to choose a suitable strategy of conservative or op-
portunistic, without taking advantage of the respective benefits
of both at the same time. ZhouBi uses the graph skewness and
graph perfectness to schedule conservative and opportunistic
strategies, and make full use of their respective benefits.

In all, we find some effective heuristics to provide the lever-
age between the conservative and opportunistic simulation.
One interesting observation is that, large n-cliques (n ≥ 4)
are rare in these benchmarks. We can use this heuristic in the
algorithm for finding cliques to improve the efficiency. This 3-
clique dominates in the gate-level graph calls for some unique
optimization design in the underlying support. However, our
ZhouBi still has the following limitations: 1) The circuits
that ZhouBi can support for acceleration are primarily large-
scale circuits that are neither very dense nor very sparse. 2)
Every time the circuit structure is changed, ZhouBi needs to
conduct a incremental analysis of the graph structure. The
performance of the graph algorithm also has a great impact
on the performance of ZhouBi.

VI. CONCLUSION

In this paper, we identify the performance problem of gate-
level simulation with a focus on the graph representation. We
systematically study many classic circuit graphs, and observe
some unique features that can accelerate the simulation. We
propose ZhouBi framework that provides a fast and scalable
gate-level simulation. ZhouBi is fast because we optimize
the gate-level simulation from their graph structure to a fine-
grained architecture parallel support. ZhouBi supports scala-
bility because ZhouBi picks the graph skewness to partition the
graph. This skewness metric stays when the graph scales with
the signal propagation, thus the partition stays with similar
features. Our ZhouBi prototype can achieve a maximum 27.6×
performance gain on modern benchmarks, as compared to the
state-of-the-practice baselines.

ACKNOWLEDGMENT

We thank our shepherd, Professor Xun Jiao, Professor
Guangyu Sun, and other anonymous reviewers for their in-
sightful comments. We also thank SMIT Group Limited
for their support and in-depth discussions. This work is
supported by the National Key R&D Program of China,
No.2022YFB4501703, the Provincial Key Research and De-
velopment Program of Jiangxi (20212BBE53004), and the
Major Key Project of PCL (PCL2022A05).

REFERENCES

[1] S. Williams and M. Baxter, “Icarus verilog: open-source verilog more
than a year later,” Linux Journal, vol. 2002, no. 99, p. 3, 2002.

[2] D. C. Hyde, “Bucknell handbook on verilog hdl,” Com puter Science
Department, Bucknell University Lewis burg, 1995.

[3] A. J. L. Martin, “Cadence design environment,” New Mexico State
University, Tutorial paper, p. 35, 2002.

[4] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang et al., “Openpiton: An open
source manycore research framework,” ACM SIGPLAN Notices, vol. 51,
no. 4, pp. 217–232, 2016.

[5] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI physical design:
from graph partitioning to timing closure. Springer, 2011, vol. 312.

[6] W. Su and C. L. Seitz, “Variants of the chandy-misra-bryant distributed
discrete-event simulation algorithm,” California Institute of Technology,
1988.

[7] S. Sabarathinam and A. Prasad, “Generalized synchronization in a
conservative and nearly conservative systems of star network,” Chaos:
An Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 11, p.
113107, 2018.

[8] B. Wang, Y. Zhai, Z. Wang, H. Zhang, and D. Qing, “Enhanced
null message algorithm for hybrid parallel simulation systems with
large disparity in time step,” in 2016 IEEE/ACM 20th International
Symposium on Distributed Simulation and Real Time Applications (DS-
RT). IEEE, 2016, pp. 61–68.

[9] A. Pellegrini and F. Quaglia, “A fine-grain time-sharing time warp
system,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 27, no. 2, pp. 1–25, 2017.

[10] X. Liu and P. Andelfinger, “Time warp on the gpu: Design and
assessment,” in Proceedings of the 2017 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, 2017, pp. 109–120.

[11] D. Jefferson and R. Fujimoto, “A brief history of time warp,” in
Advances in Modeling and Simulation: Seminal Research from 50 Years
of Winter Simulation Conferences. Springer, 2017, pp. 97–134.

[12] M. Bartels, H. Wei, and D. C. Mason, “Dtm generation from lidar data
using skewness balancing,” in 18th International Conference on Pattern
Recognition (ICPR’06), vol. 1. IEEE, 2006, pp. 566–569.

[13] C. Albrecht, “Iwls 2005 benchmarks,” in International Workshop for
Logic Synthesis (IWLS): http://www. iwls. org, 2005.

[14] F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Electrical networks and
algebraic graph theory: Models, properties, and applications,” Proceed-
ings of the IEEE, vol. 106, no. 5, pp. 977–1005, 2018.

[15] G. Zhang, H. He, and D. Katabi, “Circuit-gnn: Graph neural networks
for distributed circuit design,” in International conference on machine
learning. PMLR, 2019, pp. 7364–7373.

[16] M. R. Rohanipoor, B. Ghavami, and M. Raji, “Improving combinational
circuit reliability against multiple event transients via a partition and
restructuring approach,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 39, no. 5, pp. 1059–1072, 2019.

[17] X. Yin, B. Sedighi, M. Varga, M. Ercsey-Ravasz, Z. Toroczkai, and
X. S. Hu, “Efficient analog circuits for boolean satisfiability,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 1, pp. 155–167, 2017.

[18] P. Vaziri and K. Vora, “Controlling memory footprint of stateful stream-
ing graph processing.” in USENIX Annual Technical Conference, 2021,
pp. 269–283.

[19] R. Xiao and C. Chen, “Gate-level circuit reliability analysis: A survey,”
VLSI Design, vol. 2014, 2014.

[20] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational
benchmark suite,” in Proceedings of the 24th International Workshop on
Logic & Synthesis (IWLS), 2015.

[21] N. Prasad, I. Chakrabarti, and S. Chattopadhyay, “An energy-efficient
network-on-chip-based reconfigurable viterbi decoder architecture,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65,
no. 10, pp. 3543–3554, 2018.

[22] T. Storch, “How randomized search heuristics find maximum cliques in
planar graphs,” ACM, 2006.

[23] A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen,
“Colpack: Software for graph coloring and related problems in scientific
computing,” ACM Transactions on Mathematical Software, vol. 40,
no. 1, 2013.

[24] G. Saucier, D. Brasen, and J. Hiol, “Partitioning with cone structures,”
in Proceedings of 1993 International Conference on Computer Aided
Design (ICCAD). IEEE, 1993, pp. 236–239.

[25] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A.
Miller, and M. Upton, “Hyper-threading technology architecture and
microarchitecture.” Intel Technology Journal, vol. 6, no. 1, 2002.

[26] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine et al., “Open
mpi: Goals, concept, and design of a next generation mpi implementa-
tion,” in European Parallel Virtual Machine/Message Passing Interface
Users’ Group Meeting. Springer, 2004, pp. 97–104.

[27] D. Zheng, X. Zang, and M. D. Wong, “Topopart: a multi-level
topology-driven partitioning framework for multi-fpga systems,” in
2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 2021, pp. 1–8.

[28] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, and L. Pozzi,
“Partition and propagate: An error derivation algorithm for the design
of approximate circuits,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

[29] Y.-C. Lu, S. Pentapati, L. Zhu, G. Murali, K. Samadi, and S. K. Lim, “A
machine learning-powered tier partitioning methodology for monolithic
3-d ics,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 11, pp. 4575–4586, 2021.

[30] C. Zeng, F. Yang, and X. Zeng, “Accelerate logic re-simulation on gpu
via gate/event parallelism and state compression,” in 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
2021, pp. 1–8.

[31] L. Lai, Q. Zhang, H. Tsai, and W.-T. Cheng, “Gpu-based hybrid parallel
logic simulation for scan patterns,” in 2020 IEEE International Test
Conference in Asia (ITC-Asia). IEEE, 2020, pp. 118–123.

[32] A. Eker, Y. Arafa, A.-H. A. Badawy, N. Santhi, S. Eidenbenz, and
D. Ponomarev, “Load-aware dynamic time synchronization in parallel
discrete event simulation,” in Proceedings of the 2021 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation, 2021, pp.
95–105.

