
1

Denoising and Adaptive Online Vertical Federated
Learning for Sequential Multi-Sensor Data in IIoT

Heqiang Wang, Xiaoxiong Zhong, Kang Liu, Fangming Liu, Weizhe Zhang

Abstract—With the advancement of computational capabil-
ities in edge devices such as intelligent sensors in the Industrial
Internet of Things (IIoT), these sensors evolving beyond simple
data collection to support complex computational tasks. This ad-
vancement provides new opportunities for adopting distributed
learning approaches in IIoT. In this study, we focus on enhancing
learning performance in an industrial assembly line scenario
where multiple distributed sensors sequentially collect real-time
data with distinct feature spaces. However, existing research
lacks an online distributed learning framework tailored for such
IIoT settings. To address this gap, we propose the Denoising
and Adaptive Online Vertical Federated Learning (DAO-VFL)
algorithm, a novel algorithm that leverages the computing
potential of edge sensors while addressing key challenges such as
communication overhead and data privacy. DAO-VFL effectively
manages continuous data streams and adapts to shifting learning
objectives. Furthermore, it can address critical challenges preva-
lent in industrial environment, such as communication noise and
heterogeneity of sensor capabilities. To support the proposed
algorithm, we provide a comprehensive theoretical analysis,
highlighting the effects of noise reduction and adaptive local
iteration decisions on the regret bound. Experimental results
on two real-world datasets further demonstrate the superior
performance of DAO-VFL compared to benchmarks.

Index Terms—Industrial Internet of Things, Vertical Feder-
ated Learning, Online Learning, Deep Reinforcement Learning,
Communication Noise Reduction, Federated Learning for Edge
AI

I. INTRODUCTION

Recent advancements in communication technologies and
the proliferation of intelligent edge devices, coupled with
the rapid pace of industrial informatization, have driven the
widespread adoption of the Industrial Internet of Things (IIoT)
[1]. This growth is largely attributed to IIoT’s potential to
significantly enhance productivity and efficiency across var-
ious industries. As we move forward into future industrial
revolutions, particularly Industry 4.0 [2], the IIoT is expected
to play a pivotal role in the development of new applications
such as smart manufacturing, smart factories, smart transporta-
tion, and smart healthcare. To enable intelligent services and
applications within the IIoT ecosystem, artificial intelligence
(AI) techniques, particularly machine learning (ML) and deep
learning (DL), are widely used to train models on industrial
data. Traditionally, this training has been conducted in cen-
tralized cloud environments or data centers. However, this

H. Wang, X. Zhong, K. Liu, F. Liu and W. Zhang are with Peng Cheng
Laboratory, Shenzhen, 518066, China.

Corresponding Authors: Xiaoxiong Zhong, Kang Liu.

approach faces significant challenges as IIoT data volumes
continue to grow. The need to transfer large volumes of IIoT
data to centralized servers for model training demands sub-
stantial network bandwidth and introduces considerable com-
munication overhead, which is impractical for time-sensitive
IIoT applications like autonomous driving [3] and real-time
healthcare [4]. Moreover, uploading sensitive data to the
cloud increases the risk of privacy breaches. In response to
these challenges, distributed learning based on edge devices,
particularly federated learning (FL) [5], has gained attention
as a promising solution. FL offers a more cost-effective and
privacy-preserving alternative for deploying intelligent IIoT
applications in a distributed manner, minimizing the need for
data transfer while ensuring that sensitive information remains
processed locally.

ID Features

1 ...

2 ...

... ...

Sensor 1

Server Head

Model

Feature

Embedding

1 2 3

Assembly Line

Feature

Model

Local Data

Per round

1 2

Local Iterations

3

 Noise

Sensor 2

Feature

Embedding

Feature

Model

1

Local Iterations

ID Features

1 ...

2 ...

... ...

Sensor 3

Feature

Embedding

Feature

Model

1

Local Iterations

ID Features

1 ...

2 ...

... ...

2

1

1

2

2

2

3

3

3

1 32

Denoise

Local Data

Per round

Local Data

Per round

Adaptive

Online

1

 Noise Noise

Fig. 1: DAO-VFL for IIoT-Based Assembly Line

The IIoT encompasses a broad array of application sce-
narios, each presenting its own set of problems, challenges,
and potential solutions. In this work, we focus on an indus-
trial assembly line scenario, as illustrated in Fig. 1, where
multiple sensors collaborate for tasks like quality control and
fault detection. As sensors become increasingly advanced,
their roles have expanded beyond simple data collection and
transmission to encompass more complex tasks such as model
training and inference. In industrial assembly lines, numerous
sensors are distributed along the line. Due to variations in

2

the types and locations of these sensors, the data they collect
for a product moving through the assembly line can be seen
as different features of the same dataset. This setup aligns
perfectly with the concept of vertical federated learning (VFL)
[6], [7], where participants have distinct feature spaces but
share the same set of data samples. The core idea behind VFL
is to partition the DNN into distinct segments, each trained
separately by individual sensors and the server, ensuring that
raw data remains at the sensors. The DNN is divided into
a head classifier and multiple vertically separable feature
extractors, one for each sensor. Instead of transmitting raw data
to the server, each sensor processes its local data through its
own feature extractor, generating a feature embedding, which
is then sent to the server. The server’s head classifier then
processes the feature embeddings from all the sensors to derive
the final results.

To date, the deployment of VFL frameworks in IIoT-based
assembly line scenarios has not been thoroughly explored in
existing research. In addition to addressing this gap, we also
consider three key challenges that are commonly encountered
in such industrial environments. First, since sensor data in
industrial assembly line is collected in real-time and may not
be fully available before training starts, the algorithm must be
designed using an online learning approach, unlike traditional
offline learning methods that rely on a static datasets. Second,
communication between sensors over wireless networks in
industrial environments often experiences interference and is
subject to various levels of noise [8]. Therefore, it is critical
to develop effective noise reduction techniques to mitigate
these effects, which would enhance the overall learning perfor-
mance. Third, considering the varying computational capabil-
ities and network conditions of sensors in industrial assembly
lines [9], and in order to achieve synchronized update, it is
crucial to design algorithms that determine the appropriate
number of local iterations for each sensor. This approach helps
reduce overall latency while enhancing learning performance.

Building on the gaps and challenges discussed above, this
work introduces the concept of Denoising and Adaptive Online
Vertical Federated Learning (DAO-VFL) within an IIoT based
assembly line scenario. Unlike previous VFL studies, our
approach directly addresses practical issues encountered in
IIoT environments. It emphasizes the integration of Denoising
Adaptive and Online mechanisms within the VFL framework,
which have not been systematically explored in prior VFL
research. Our primary contributions can be summarized as
follows:

1) We formulate the multi-sensor distributed learning prob-
lem in IIoT-based assembly lines as an online VFL prob-
lem. Building on this problem, and addressing challenges
such as communication noise and sensor heterogeneity
in industrial environments, we propose the DAO-VFL
algorithm, which can facilitate practical online training
by incorporating noise reduction techniques and adaptive
local iteration decisions.

2) We conduct a comprehensive theoretical analysis of the
DAO-VFL algorithm, accounting for the impacts of com-
munication noise and adaptive local iteration decisions.

The derived regret bound highlights these impacts and
provides insights into selecting appropriate local iteration
decisions for each sensor.

3) To achieve noise reduction, we incorporated a denoising
autoencoder seamlessly into the training process. To
determine the local iteration decisions for each sensor,
we formulated an optimization problem that accounts for
learning performance, overall latency, and local iteration
disparities. This problem is solved using a deep rein-
forcement learning approach, to derive the local iteration
decisions for each sensor at every global round.

4) In the experimental section, we evaluated the DAO-VFL
algorithm using two datasets: the widely used CIFAR-10
dataset and the real-world IIoT-based C-MAPSS dataset
for residual life prediction. Our results not only assess
the overall performance of the DAO-VFL algorithm but
also provide a detailed analysis of its noise reduction
capabilities and adaptive local iteration decision-making
mechanisms.

The rest of this paper is organized as follows. Section II
reviews related works on FL for IIoT, VFL, and online FL.
Section III introduces the system model and problem formula-
tion. In Section IV, we introduce the specific process of DAO-
VFL algorithm. Section V presents the regret analysis of DAO-
VFL. Section VI formulates and addresses the optimization
problem for determining the local iterations decision for each
sensor. The experimental results of DAO-VFL are presented
in Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORK

A. FL for Industrial Internet of Things

As the IIoT continues to evolve, the demand for increased
intelligence within IIoT is becoming increasingly urgent. AI
techniques, particularly DL, play a crucial role in enabling
this intelligence and are widely utilized in IIoT environments.
However, the inherent characteristics of IIoT, such as the large
number of distributed computing nodes and complex network
architectures [10], pose significant challenges to traditional
centralized learning approaches, making them inadequate for
these scenarios. To address these challenges, FL has emerged
as a promising alternative, gaining significant attention for
its ability to better align with the unique characteristics of
IIoT systems. The works of [11], [12] provide comprehensive
overviews of FL for IIoT. Unlike conventional FL, IIoT-based
FL is typically tailored to specific application domains, such as
smart manufacturing [13], smart transportation [14] and smart
grid [15]. Additionally, IIoT-based FL often addresses critical
and urgent industrial issues, including anomaly detection [16],
network prediction [17] and intrusion detection [18], [19].
However, research in IIoT-based FL remains in its early stages,
with most current studies focusing on ideal conditions and
overlooking critical challenges specific to IIoT environments.
These challenges include noise in the industrial environment
[20], limited data storage capacity of edge devices [21], and
the heterogeneity of IIoT edge devices [9]. In this work, we

3

systematically investigate FL deployment within IIoT-based
assembly line scenarios. We aim to address and provide solu-
tions to some of the critical challenges posed by real industrial
environments, thereby advancing the practical applicability of
FL in IIoT environment.

B. Vertical Federated Learning

In recent years, VFL has garnered significant attention.
Originally introduced by [22], VFL operates on vertically
partitioned data, setting it apart from the concept of hori-
zontal FL (HFL) [23]. Comprehensive surveys such as [6],
[7] have further expanded on the scope of VFL. Unlike
horizontal FL, VFL faces its own set of unique challenges.
Some studies [24]–[26] have focused on optimizing data
utilization to enhance the effectiveness of the joint model in
VFL. Other research efforts [27], [28] have concentrated on
creating privacy-preserving protocols to mitigate the risks of
data leakage. Additionally, efforts have been made to reduce
communication overhead, either by incorporating multiple
local updates per iteration [29], [30] or by employing data
compression techniques [31], [32]. VFL’s practical benefits,
particularly in enabling data collaboration among diverse
institutions across various industries, have heightened inter-
est from both academic and industrial communities. VFL
has found applications in a wide range of fields, including
recommendation systems [33], finance [34], and healthcare
[35]. As VFL is applied in increasingly diverse scenarios,
scalability has become a key research concern. Work [36]
improves scalability by using a mutual information-based
party-level evaluation to select informative participants. Work
[37] proposes a practical private sample alignment protocol,
which supports multi-client scenarios through a lightweight
delegated private set intersection scheme and a threshold-
based mechanism, enabling reliable sample alignment at scale
without compromising privacy. However, the VFL approaches
outlined above exhibit two significant limitations. First, they
primarily focus on offline learning with static datasets, over-
looking the dynamic nature of stream data. Second, they do
not adequately address the unique challenges inherent to real
IIoT scenarios. These limitations form the core issues that this
work seeks to resolve.

C. Online Federated Learning

Online learning is tailored to process data sequentially
and update models incrementally, making it particularly ef-
fective for applications where data continuously arrives and
models need to adapt to new patterns in real-time [38]. These
methods are computationally efficient and have the distinct
advantage of not needing the entire dataset to be available
at the outset, making them ideal for scenarios with limited
memory resources. Consider the FL scenario, online federated
learning (OFL) [39] has emerged as an innovative paradigm
that extends the principles of online learning to a network of
multiple learners or agents. The key difference between OFL
algorithms and traditional FL algorithms lies in the goal of
local updates. While traditional FL algorithms aim to find a
single global model that minimizes a global loss function, OFL

algorithms focus on identifying a sequence of global models
that minimize cumulative regret. Recent years have seen lim-
ited research on OFL. For instance, the authors of [40] propose
a communication-efficient OFL method that balances reduced
communication overhead with strong performance. Similarly,
[41] introduces FedOMD, an OFL algorithm tailored for
uncertain environments, capable of processing streaming data
from devices without relying on statistical assumptions about
loss functions. While the aforementioned studies primarily
focus on the HFL scenario, work [42] addresses the VFL
context by proposing an online VFL architecture tailored to
cooperative spectrum sensing problems, achieving a sublinear
regret rate O(1/

√
T). However, these studies are based on

idealized scenarios and do not address the challenges of
applying online VFL in real industrial scenarios, such as noise
interference and device heterogeneity. Non-idealized scenarios
can also impact the algorithm’s performance, potentially pre-
venting it from achieving a sublinear regret rate.

D. Noise Mitigation Strategies

FL in IIoT-based scenarios is inherently vulnerable to
various types of noise, which can be broadly categorized into
three types. First, raw data noise may occur during sensor
data collection due to environmental interference or device
limitations [20], and can be mitigated using signal processing
techniques such as the Wiener filter [43]. Second, even when
raw data is reliable, label noise may arise due to inaccurate
or corrupted annotations [44]. This can be addressed using
noise adaptation layers [45] or loss correction methods [46].
Third, communication noise can occur during data trans-
mission over unstable IIoT networks, which may degrade
the learning performance [47]. To address communication
noise, various methods have been proposed in the context
of HFL. For instance, [48] introduces a robust FL design
using regularization and successive convex approximation to
mitigate communication noise. The FedNMUT algorithm [49]
incorporates gradient tracking in decentralized FL with graph-
based communication, improving robustness against noisy
channels. In [50], a median-based gradient clipping technique
is proposed to suppress outlier noise while preserving essential
gradient information. However, these methods are designed
for HFL settings, where communication typically involves
model parameters or gradients. In contrast, VFL requires
the exchange of intermediate feature representations, making
direct adaptation of HFL-based noise mitigation strategies
ineffective. Consequently, the core objective in VFL under
communication noise is to reconstruct clean feature represen-
tations. This can be achieved using techniques such as Denois-
ing Autoencoder (DAE) [51] or Transformer-based denoising
method [52]. Considering the trade-off between performance
and deployment efficiency, our work adopts a DAE-based
approach as an solution.

III. SYSTEM MODEL

Before presenting the details of the system model, we
first summarize the essential notations used in DAO-VFL in
Table I. Consider an IIoT assembly line system consisting of

4

a single server and K smart sensors. Each sensor collects
distinct system parameters along the assembly line, such as
temperature, pressure, humidity, as illustrated in Fig. 1. These
parameters are treated as independent features within a single
data sample, reflecting the unique identities and locations
of each sensor. As a result, the distributed training process
involving these sensors falls under the category of a VFL
problem, since each sensor operates within a distinct feature
space. During the operation of the assembly line, the sensors
continuously gather new data over time, with the timeline
divided into discrete periods represented as t = 1, 2, ..., T .

TABLE I: Key Notations of DAO-VFL

Symbol Semantics

K The number of sensors
T The number of global rounds
N The number of data samples collected by sensors
P The dimension of data samples
θk The feature model
θ0 The head model
Θ The overall model

Et,k The adaptive local iterations
hk(·) The original feature embedding
h̃k(·) The noise feature embedding
ĥk(·) The denoise feature embedding
Φ The model representation
Gt The stacked partial derivatives
η The learning rate

In each time period, each sensor k ∈ K collects a local
training dataset consisting of N data samples, represented as
xtk ∈ RN×Pk , where Pk is the dimension of the raw data
collected by sensor k. The individual data samples, denoted
as xt,n

k for all sensors, are gathered simultaneously and linked
to a common label, yt,n, which indicates, for instance, the
product’s conformity. The collective training dataset at period
t is denoted as xt ∈ RN×P , where P =

∑K
k=1 Pk. It should

be emphasized that although xt represents the entirety of data
collected at a given period, these data are gathered and utilized
locally by each sensor individually and are not uploaded to the
server during the training process.

In the VFL framework, each sensor trains a distinct local
feature model parameterized by θk to process its collected
raw data. Concurrently, the server trains a server head model
represented by the parameter θ0. The combined parameters
of the entire model are denoted as Θ = [θ⊤0 , θ

⊤
1 , ..., θ

⊤
K]⊤.

The raw data xt,n
k collected by each sensor is processed

through its local feature model, a process referred to as feature
extraction, and represented as hk(θk;x

t,n
k). This operation

transforms high-dimensional raw data into low-dimensional
feature representations, which facilitate the learning process
of the server head model. Based on these definitions, the
loss function for the collective training dataset at period t is
expressed as follows:

Ft(Θ; xt, yt) =
1

N

N∑
n=1

lt(θ0, {hk(θk;x
t,n
k)}Kk=1; y

t,n) (1)

where lt(·) represents the loss function for the single data
sample. For simplicity, the feature embedding of the dataset

is denoted as xt
k as hk(θk; xtk), which is often abbreviated

as hk(θk; xtk) = ht
k(θk). Additionally, we assign k = 0 to

the server, defining h0(θ0) = θ0. In this context, h0(θ0)
refers to the head model rather than the feature embedding.
Furthermore, the overall loss function is expressed as Ft(Θ) =
Ft(h0(θ0), h1(θ1), ..., hK(θK)).

Since the training process relies on a dynamically col-
lected, real-time data instead of a static dataset, an online
learning approach becomes essential. Let the overall model at
each period be represented as Θ1, . . . ,ΘT . The learning regret,
RegT is defined to quantify the gap between the cumulative
loss incurred by the learner and the cumulative loss of an
optimal fixed model in hindsight. Specifically:

RegT =

T∑
t=1

Ft(Θ
t; xt, yt)−

T∑
t=1

Ft(Θ
∗; xt, yt) (2)

Here, Θ∗ = argminΘ
∑T

t=1 Ft(Θ; xt, yt) represents the op-
timal fixed model selected in hindsight. Our objective is to
minimize the learning regret, which equates to minimizing
the cumulative loss. Importantly, if the learning regret grows
sublinearly with respect to T , it indicates that the online
learning algorithm can progressively reduce the training loss
asymptotically.

The fixed optimal strategy in hindsight refers to a strategy
determined by a centralized entity with full prior knowledge of
all per-round loss functions. In our problem, achieving such an
optimal strategy would require access to future information, in-
cluding upcoming data collection for all rounds. However, this
information is inherently unpredictable due to its randomness.
As a result, the complete loss functions are also unknown at the
outset and evolve dynamically over time. Therefore, regret just
serves as a metric to quantify the performance gap between
the proposed algorithm and the theoretical optimal strategy
in our theoretical analysis. For experimental validation, we
evaluate the learning performance of the proposed algorithm
using metrics such as test loss and test accuracy.

IV. DENOISING AND ADAPTIVE ONLINE VERTICAL
FEDERATED LEARNING

In this section, we introduce the details of the DAO-VFL
algorithm. To provide an overview, we summarize the chal-
lenges faced by DAO-VFL and the corresponding solutions
in Fig.2. Unlike traditional VFL approaches, the inherently
complex environments of IIoT scenarios necessitate addressing
three additional challenges. First, sensors in industrial wireless
network environments are subject to noise interference [53],
which can negatively impact training performance. Therefore,
it is crucial to design effective and easily deployable noise
reduction methods to mitigate noise effects. Second, the vary-
ing positions of sensors along the assembly line, coupled
with differences in their computational capacities and channel
conditions, add further complexity. Achieving synchronized
updates within the learning system requires different sensors
to perform varying numbers of local iterations. Developing an
adaptive local iteration strategy that enhances overall training
efficiency and performance is also a crucial aspect in this

5

work, as it has not been adequately explored before. Third,
sensor data in industrial assembly lines is collected in real-
time. As a result, the algorithm must align with an online
learning approach to effectively handle the dynamic dataset.

Denoising and Adaptive Online

Vertical Federated Learning (DAO-VFL)

Noise Interference

Denoising

Autoencoder

Device Heterogeneity Data Stream

Deep Reinforcement

Learning
Online Learning

Denoising Adaptive Online

Fig. 2: Challenges and Solutions in DAO-VFL

Next, we will outline the detailed process of the DAO-VFL
algorithm, beginning with the introduction of some additional
concepts. For convenience, a single time period in our frame-
work is also defined as one global training round. During each
global round t ∈ T , where T = {0, 1, 2, . . . , T − 1}, both the
sensors and the server execute a specified number of local
training iterations, represented by the parameter Et,k. This
parameter is dynamically determined based on the real-time
status of the sensors in the current global round. The approach
for deciding the number of local iterations for each sensor will
be discussed in the later section. Each local training iteration
is indexed as τ = 0, 1, 2, ..., Et,k. Notably, the DAO-VFL
algorithm is designed for an online synchronized scenario,
even though sensors perform varying numbers of local training
iterations. The detailed flow of the DAO-VFL algorithm is
outlined in Algorithm 1. Subsequently, we provide an in-depth
explanation of the key steps.

1) Feature Embedding Extracting: At the start of each
global round t, each sensor k in the assembly line incremen-
tally collects the new training dataset, xt

k and yt. It is important
to note that the data samples xt

k are collected independently
by each sensor in chunks, with each sensor capturing only
one or several features. These data samples are then processed
by each sensor’s local feature model, θt,0k to generate feature
embeddings ht

k(θ
t,0
k). The initial feature model θt,0k at current

global round is inherited from the previous global round.
Following this, each sensor uploads its feature embeddings
to the server to further obtain the model representation.

2) Feature Embedding Denoising: Given the interference
present in complex wireless network environments within
the IIoT based assembly line scenario, feature embeddings
transmitted through the wireless network are inevitably af-
fected by noise. Suppose we define h̃k(θ

t,0
k ; xtk) as the noisy

feature embedding. To address this, it is essential to develop
effective noise reduction techniques to obtain the denoised
feature embedding, denoted as ĥk(θ

t,0
k ; xtk). To achieve this,

we employ Denoising Autoencoders (DAE) for noise reduc-
tion on the server side. Given the server’s robust computa-
tional capabilities, this process does not impose a significant
computational burden. DAE is a specialized type of neural
network designed to learn robust feature representations by

Algorithm 1 DAO-VFL

1: Input: Local datasets {xtk}
t∈T
k∈K, Label sets {yt}t∈T , The

number of client K, The number of global rounds T .
2: Output:The overall model {Θt}t∈T each global round.
3: Initialize: The initial feature model θt=0,τ=0

k for all sen-
sors k and the initial head model θt=0,τ=0

0 for server.
4: for t = 0, 1, 2, ..., T − 1 do
5: for Sensor k = 1, 2, ...,K in parallel do
6: if τ = 0 then
7: Collects new data samples xtk.
8: Gets the feature embedding hk(θ

t,0
k ; xtk).

9: Sends hk(θ
t,0
k ; xt

k) to server.
10: end if
11: end for
12: Server collects noise feature embedding

h̃k(θ
t,0
k ; xtk) from sensors.

13: Server applies the denoising autoencoders
and get the denoised embedding ĥk(θ

t,0
k ; xtk).

14: Server collects model representation Φ̂t,0.
15: Server sends Φ̂t,0 to all sensors.
16: for k = 0, 1, 2, ...,K in parallel do
17: Each sensor k decide the Et,k via Algorithm 2.
18: for τ = 1, 2, ..., Et,k − 1 do
19: Gets Φ̂t,τ

k ←
{
Φ̂t,0

−k;h
t
k(θ

t,τ
k)

}
.

20: Updates feature or head model θt,τ+1
k .

21: end for
22: Inherit the model θt+1,0

k ← θ
t,Et,k

k for next round.
23: end for
24: end for

reconstructing input data from a corrupted version. Unlike
traditional autoencoder, which focus on compressing and then
reconstructing the original input, DAE is explicitly trained to
remove noise from the input, thereby revealing the underlying
structure of the data.

The noise reduction process operates as follows: once
the server receives the noisy feature embedding, it first uses
an encoder to map the embedding from a high-dimensional
space to a lower-dimensional latent space. The decoder then
reconstructs the feature embedding, mapping it back to the
original space. During the initial Tdl global rounds, also
referred to as the denoising learning period, it is assumed
that the original feature embeddings from the sensors are
available to the server. Achieving optimal DAE performance
requires close cooperation between the sensors and the server
and is strongly influenced by the Tdl. Theoretically, a larger
Tdl allows for more effective noise reduction. Based on the
network conditions, the server can employ either a single DAE
or multiple DAEs to denoise the noisy feature embeddings re-
ceived from the sensors. Then for the paired feature embedding{
h̃t
k(θ

t,0
k), ht

k(θ
t,0
k)

}
, the training target of DAE is:

argmin
θd

E{h̃t
k(θ

t,0
k),ht

k(θ
t,0
k)}

{
Ls

(
Λθd(h̃

t
k(θ

t,0
k)), ht

k(θ
t,0
k)

)}
(3)

where E denotes the expectation operator, Λθd(·) represents

6

the trainable DAE, θd refers to the weights of the DAE, and
Ls(·) is the loss function used to evaluate the DAE’s learning
performance. Once processed through the trained DAE, the
noisy feature embedding h̃k(θ

t,0
k ; xtk) is transformed into the

denoised feature embedding ĥk(θ
t,0
k ; xtk). In later sections, we

will validate the effectiveness of noise reduction through both
theoretical analysis and experimental results.

Raw Data

Feature Model

Noisy

Feature

Embedding

Sensor 1

Sensor 2 Server

Noise

Denoising

 Autoencoder

Denoised

Feature

Embedding

Head Model
Feature

Embedding

Fig. 3: The Architecture of DAO-VFL Noise Reduction

3) Model Representation Distributing: After collecting all
the denoised feature embedding, the server compiles the model
representation Φ̂t,0, which includes the server head model and
all denoised feature embeddings. The model representation is
formally defined as follows:

Φ̂t,0 ←
{
θt,00 , ĥt

1(θ
t,0
1), · · · , ĥt

k(θ
t,0
k), · · · , ĥt

K(θt,0K)
}

(4)

The server then distributes the model representation Φ̂t,0 to
all sensors. In this distribution process, the impact of noise is
not considered. This is because servers can utilize directional
antennas to focus transmission beams towards specific sensors,
ensuring reliable communication.

4) Feature and Head Model Updating: Each sensor k
and the server employ the received model representation Φ̂t,0

to update their respective feature or head models over for
Et,k iterations. Here, Et,k representing the adaptive local
iteration decisions, varies across sensors. The updates follow
this formula for all τ = 0, ..., Et,k − 1:

θt,τ+1
k = θt,τk − η∇kFt

(
Φ̂t,0

−k, h
t
k(θ

t,τ
k)

)
(5)

Here, Φ̂t,0
−k is the collection of feature embeddings from all

sensors and the head model from server, excluding sensor k.
Notably, although the server and sensors may have different
numbers of local iterations Et,k, they operate within the same
wall clock time, ensuring that the training process remains
synchronized. Furthermore, since the training is based on a
dynamic dataset rather than a subset of a static dataset, both
the feature and head models are updated using online gradient
descent (OGD) [54] instead of traditional offline gradient
descent methods. To enhance the understanding of the DAO-
VFL process described earlier, we also present the DAO-VFL
noise reduction model architecture in Fig. 3.

During inference, the process mirrors that of training:
data collected by each sensor is first processed through its

local feature model, and the resulting feature embeddings are
uploaded to the server. The server then completes the inference
using the head model. Notably, unlike training, there is no
need to redistribute the feature embeddings back to the sensors
during inference.

Complexity Analysis: The computational complexity of
the DAO-VFL algorithm is O(T ×K×Emax×N×V), where
V denotes the per-sample cost of a forward-backward pass.
The algorithm supports high parallelism across clients, and its
total cost scales linearly with the number of global rounds
(T), clients (K), and the size of local dataset (N), making
it computationally efficient and scalable for large-scale VFL
deployments.

Remark 1 (Privacy Concern): Consistent with the sce-
narios outlined in previous VFL studies [31], [42], we assume
that all sensors and the server have access to label infor-
mation. Furthermore, the IIoT based assembly line scenario
is considered to operate in a low-risk environment, where
label sharing between sensors and the server does not pose
significant privacy concerns.

Remark 2 (Noise Concern): To train the DAE, clean
data are typically required. While this could theoretically be
achieved by deploying additional costly redundant sensors
or using dedicated communication lines [55], however, such
approaches are not feasible for widespread, long-term de-
ployment. An alternative method is to rely solely on noisy
data for training. Notably, certain DAE-based noise reduction
techniques, such as Noise2Noise [56], Noise2void [57], are
specifically designed to function in scenarios where clean data
is unavailable. These approaches can also be integrated into
our algorithm. However, due to the complexity of the current
algorithm, we do not explore these additional extensions in
this work.

Remark 3 (Scalability Concern): DAO-VFL demon-
strates strong scalability, having been enhanced from the
foundation of online vertical federated learning to address
challenges such as communication noise and sensor hetero-
geneity commonly encountered in industrial scenarios. Build-
ing upon this foundation, DAO-VFL can further improve
system performance by incorporating targeted modules. For
example, integrating a client selection mechanism enables the
identification of optimal feature contributors in each training
round, thereby enhancing learning effectiveness while reduc-
ing communication overhead. Additionally, the inclusion of an
asynchronous update module allows clients to perform updates
independently, improving training efficiency by maximizing
time utilization across heterogeneous clients.

V. REGRET ANALYSIS

In this section, we provide a comprehensive regret analysis
of the proposed DAO-VFL algorithm. To support our anal-
ysis, we begin by introducing several additional definitions.
Specifically, we define Ĝ

t
as the stacked partial derivatives

that incorporate the effects of denoising at global round t:

Ĝ
t
:=

Et,0−1∑
τ=0

∇0Ft(Φ̂
t,τ
0), . . . ,

Et,K−1∑
τ=0

∇KFt(Φ̂
t,τ
K)

 (6)

7

where Φ̂t,τ
k = (Φ̂t,0

−k, h
t
k(θ

t,τ
k)). Using Ĝ

t
, we can define the

updates to the global model during a global round t with the
following equation:

Θt+1,0 = Θt,0 − ηĜ
t

(7)

For comparison, we also define Gt as the stacked partial
derivatives at global round t without accounting for the impact
of noise:

Gt :=

Et,0−1∑
τ=0

∇0Ft(Φ
t,τ
0), . . . ,

Et,K−1∑
τ=0

∇KFt(Φ
t,τ
K)

 (8)

For the subsequent theoretical analysis, we consider the overall
gradient and model as D-dimensional vector. We denote an
arbitrary vector element d ∈ [1, D] of the overall gradient as
Gk,d, and the arbitrary vector element d ∈ [1, D] of the overall
model as Θk,d.

Next, we will present the assumptions typically employed
in the analysis of online convex optimization, as referenced
in [58]. Some of these assumptions are defined at the vector
element level and are specifically tailored to align with the
requirements of our proof within the context of online learning
in VFL scenarios [42].

Assumption 1. For any (xt; yt), the loss function Ft(Θ; xt; yt)
is convex with respect to Θ and differentiable.

Assumption 2. The loss function is L-Lipschitz continuous,
the partial derivatives satisfies: ∥∇kFt(Θ)∥2 ≤ L2.

Assumption 3. The partial derivatives corresponding to a
consistent loss function satisfy the following condition:∥∥∥Gt,τ ′

k − Gt,τ
k

∥∥∥ ≤ λ
∥∥∥θt,τ ′

k − θt,τk

∥∥∥
In the context of the online learning scenario, where the

loss function changes over time, we use t to indicate that
gradients and models correspond to the same loss function.
To differentiate their origins from various local iterations, we
use τ ′ and τ , respectively.

Assumption 4. The arbitrary vector element d in the overall
model Θk,d is bounded as follows: |Θk,d| ≤ ρ.

Next, we will provide the assumption for the overall
gradient after noise reduction, comparing it to the original
overall gradient.

Assumption 5. The arbitrary vector element d in the overall
gradient, adjusted through a denoising method, has a bounded
range range of variation as:

∣∣∣Ĝt,τ

k,d − Gt,τ
k,d

∣∣∣ ≤ βd.

Assumption 1 ensures the convexity of the function, al-
lowing us to leverage the associated properties of convexity.
Assumption 2 constrains the magnitude of the loss function’s
partial derivatives. Assumption 3 guarantees that the variation
in partial derivatives remains within a specific range, consistent
with the model’s variation across different local iterations
under a consistent loss function. Assumption 4 defines the al-
lowable range for any vector element within the overall model.

Finally, Assumption 5 bounds the impact of the application of
noise reduction methods on the overall model relative to the
original model. Based on the above assumptions, we can derive
the main result, presented as Theorem 1, as follows:

Theorem 1. Under Assumption 1-5, DAO-VFL with adaptive
local iterations decisions Et,k ≥ 1, while considering the
impact of denoising, achieves the following regret bound:

RegT =

T∑
t=1

Et

[
Ft(Θ

t,0; xt; yt)
]
−

T∑
t=1

Ft(Θ
∗; xt; yt)

≤
∥∥Θ1,0 −Θ∗

∥∥2
2ηEmin

+
ηTDβ2

d

Emin
+

ηTEmaxL
2K

Emin

+ 2DTρ(ηλEmaxL+ βd) (9)
Emax = max

t∈T ,k∈K
Et,k, Emin = min

t∈T ,k∈K
Et,k

Proof. The proof can be found in Appendix B.

Based on Theorem 1, we derive the following findings:
First by setting η = O(1/

√
T), the DAO-VFL can achieve

the regret bound of O(
√
T + Tβd) over T time rounds. The

regret bound is affected by the term O(Tβd), which reflects
the effectiveness of the noise reduction method. Second, by
incorporating Assumption 5 and defining βn as the bounded
range of variation between the noisy gradient and the original
gradient, we can substitute βd with βn in the regret bound
from Theorem 1 to derive the regret bound in the presence
of noise. It becomes clear that the primary factors influencing
the regret bound are the magnitudes of βn and βd. If the noise
reduction method is effective, it consistently leads to a tighter
regret bound. This comparison will be demonstrated through
experimental results in the later sections. Third, the tightness
of the regret bound is also influenced by Emax and Emin.
A smaller Emax and a larger Emin lead to a tighter bound.
This highlights the importance of ensuring that all sensors are
as similar as possible in terms of Et,k during each global
round, aligning with the principle of fairness in the number
of local iterations across all sensors. In the following, we will
use simulations to further validate this finding.

Validation Study: To validate the impact of fairness in
the number of local iterations Et,k across all sensors, we
conducted simulations using the C-MAPSS and CIFAR-10
datasets under different Et,k patterns. Further experimental
details are provided in the experimental section. We tested
two patterns: Homogeneity (HO), where all sensors had the
same Et,k value in each global round, and Heterogeneity
(HE), where sensors had significantly different Et,k values
in each global round. To ensure a controlled comparison, the
total local iterations,

∑
k∈K Et,k were kept constant across all

global rounds for both patterns. The simulation results over 10
rounds are presented in Fig. 4(a) for C-MAPSS dataset and
Fig. 4(b) for the CIFAR-10 dataset.

The experimental results reveal that maintaining similar
Et,k values across sensors enhances learning performance, as
reflected by higher test accuracy and lower test loss. This
improvement is observed across both datasets. However, in
real-world industrial scenarios, achieving identical Et,k values

8

0 50 100 150 200
Number of Rounds

30

35

40

45

50
Te

st
 L

os
s (

RM
SE

)
HO
HE

(a) Test Loss with C-MAPSS

0 50 100 150 200
Number of Rounds

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

HO
HE

(b) Test Accuracy with CIFAR-10

Fig. 4: Learning Performance of DAO-VFL with Different
Local Iteration Decisions Patterns (Et,k) .

for all sensors at each global round can be challenging due
to variations in sensors’ computational and communication
capabilities, particularly in synchronized training scenarios.
In the following section, we will define the optimization
problem specific to the IIoT-based assembly line scenario and
utilize deep reinforcement learning to determine adaptive local
iteration decisions for all sensors in each global round, taking
sensor heterogeneity into account.

VI. ADAPTIVE LOCAL ITERATION DECISIONS

Before detailing the adaptive local iteration decisions,
we first summarize the key notations used to simulate the
workflow of sensors in the IIoT-based assembly line scenario
in Table II.

TABLE II: Key Notations in Adaptive Iteration Decisions

Symbol Semantics

Υco
t,k The collection latency

Υcm
t,k The communication latency

Υcp
t,k The computation latency

Wfe The number of weights in the feature embedding
rt,k The transmission rate
B The total bandwidth
gt,k The channel gain
pk The transmission power
σ2 The noise power
C The number of CPU cycles per weight
Wlc The number of weights in the local model
ft,k The CPU frequency
Υt The total latency
Ht The local iteration disparity

In the IIoT-based assembly line scenario, sensors are
positioned at various locations along the assembly line. Each
sensor undergoes three primary phases within a single global
training round: local data collection, feature embedding up-
load, and local feature model update. The detailed timeline
of these phases is illustrated in Fig. 5. In this problem, we
disregard the time needed for the server to broadcast the model
representation and omit the time spent on server-side noise
reduction, as these factors are not directly relevant to the
optimization problem and is not influenced by the sensors’
capacities. Next, we will provide definitions for each of the
three distinct phases in detail and present a comprehensive
formulation of the optimization problem.

1

Collection Latency

2 3 4

Sensor 1

Sensor 2

Sensor N

1 2

1 2 3

Global Round t

Communication Latency

Computation Latency

Fig. 5: Timeline of Sensors in One Global Round

1) Collection Latency: Given that our scenario is based
on online learning, where training is conducted using real-
time collected data rather than pre-selected batches from a
static dataset, data collection latency becomes a crucial factor.
Additionally, in the context of an assembly line, we consider
the intervals between the sequential data collection times of
each sensor. To simulate this sequential process characteristic
of an assembly line, we define the collection latency as
follows:

Υco
t,k = µk + µ0 (10)

For simplicity in the analysis, we assume that sensors collect
data sequentially based on their index, such that sensors with
smaller indices collect data earlier.

2) Communication Latency: In this scenario, sensors share
bandwidth during the upload process, as they operate within a
wireless network and transmit their feature embeddings to the
server via this wireless network. The communication latency
is equal to:

Υcm
t,k =

Wfe

rt,k
(11)

where Wfe represents the number of weights in the feature
embedding. We assume that the network bandwidth is equally
distributed among all sensors. The transmission rate between
sensor k and the server at round t, denoted by rt,k, as:

rt,k =
B

K
log2

(
1 +

gt,kpk
σ2

)
(12)

where B is the total bandwidth, gt,k represents the channel
gain between sensor k and the server at global round t, pk
denotes the transmission power of sensor k, and σ2 is the
noise power.

3) Computation Latency: In each global round, the sensor
performs at least one local update, with the number of updates
depending on its specific conditions. The computation latency
can be computed as follows:

Υcp
t,k =

Et,kCWlc

ft,k
(13)

Here, C represents the number of CPU cycles required for
sensor to update a single model weight, and Wlc denotes the
number of weights in the local model. The CPU frequency

9

of sensor k during computation at round t equals ft,k, which
varies across sensors and ranges from fmin

k to fmax
k .

Based on the definitions of latency provided above, the
total latency for each global round t can be expressed as:

Υt = max
1≤k≤K

(
Υco

t,k +Υcm
t,k +Υcp

t,k

)
(14)

To ensure fairness and reduce disparities in local iteration
decisions among sensors during each global round, as indi-
cated by the theoretical analysis and validation study from
previous section, we define the local iteration disparity for
global round t as:

Ht =

K∑
k=1

∣∣Et,k − Ēt

∣∣ = 1

K

K∑
k=1

|KEt,k −
K∑

k=1

Et,k| (15)

Defining Ht in this manner minimizes the disparity in local
iterations among sensors.

Taking into account the definitions of total latency and
the insights on disparity, it is clear that the optimization
problem must strike a balance between test accuracy and
these two additional components. Based on this, we define
the optimization problem P1 as follows:

P1 : max
E

E

[
α1

∑
t∈T

Acc(t)− α2

∑
t∈T

Υt − α3

∑
t∈T

Ht

]
(16)

where E = [Et,k] represents a T ×K matrix for each sensor’s
local iterations decision with Et,k ∈ [1, Emax], here Emax

denotes the upper limit of local iterations. The parameters α1,
α2, and α3 control the relative importance of each objective,
as determined by the designers. Our objective is to solve
the optimization problem P1, Given the large number of
parameters and their complex interdependencies, which make
direct solutions challenging. We utilize Deep Reinforcement
Learning (DRL) techniques [59], including the actor-critic
method [60] and the Proximal Policy Optimization (PPO)
algorithm [61], to solve the optimization problem P1 and
derive the adaptive local iteration decisions for each sensor.

The objective of the DRL agent is to find the best policy
mapping a state to an action that maximizes the expected
reward. In the following, we will provide a detailed expla-
nation of the state space, action space, reward and training
methodology relevant to the proposed DRL problem.

State: The state consists of the information uploaded by
each sensor prior to the local feature model update phase
of each global round. The state in the DRL framework is
represented as vectors: the data collection latency vector for
round t, Υ̂co

t = (Υco
t,1, . . .Υ

co
t,K), the communication latency

vector for round t, Υ̂cm
t = (Υcm

t,1 ,Υ
co
t,K), and CPU frequency

vector of sensors for round t, f̂t = (ft,1, . . . , ft,K), all
uploaded by the sensors. The state vector St for the DRL
framework at round t is defined as a vector with the following
four components:

St = [Υ̂co
t , Υ̂cm

t , f̂t, t] (17)

To expedite the training of DRL, we normalize each element
in the state vector to ensure they are on the same scale.

Action: At global round t, the DRL agent generates a local
iteration decision for all sensors as the action based on the state
collected and uploaded to the server, This action is defined as:

At = [Et,1, · · · , Et,k, · · · , Et,K], Et,k ∈ [1, Emax] (18)

where the action space is discrete, and Emax denotes the
empirically predefined global upper limit for local iterations
of all sensors.

Reward: To optimize the FL performance outlined in P1,
the reward function should capture the changes in learning per-
formance, total latency, and local iteration disparity. Learning
performance is measured after sensors execute the specified
actions to update the model and subsequently evaluate it on
the test datasets. Total latency and local iteration disparity are
computed directly by the server based on the selected actions.
Then the reward Rt at global training round t is defined as:

Rt = α1Acc(t)− α2Υt − α3Ht (19)

The reward can be derived from the P1 problem by decom-
posing it into subproblems for each global round, allowing the
reward for each specific time slot to be computed directly.

Algorithm 2 The DRL Agent Training Process

1: Input: The number of client K, The number of agent
training rounds Tag , The number of updates M .

2: Output:The adaptive local iteration decisions {Et,k}t∈T
k∈K.

3: Randomly initialize actor network π(·) and critic network
V (·) with weight θa and θv .

4: Initialize experience replay buffer D.
5: for t = 0, 1, 2, ..., Tag − 1 do
6: Each sensor records the information (Υco

t,k,Υ
co
t,k, ft,k).

7: Each sensor uploads its information to server.
8: The server integrate the state St.
9: Get action At by feeding St into the actor network.

10: Each sensor performs a number of local updates based
on the action At.

11: Infer on test dataset to obtain test accuracy.
12: The server calculate the reward Rt.
13: Update the state of FL from St to St+1.
14: Store transition sample (St,At,Rt,St+1) into D.
15: for m = 0, 1, 2, ...,M do
16: The server update the actor network θa using PPO.
17: The server update the critic network θv by

maximizing the reward via Eq.20.
18: end for
19: end for

Training Methodology: PPO provides a balanced ap-
proach by combining ease of implementation, sample effi-
ciency, and straightforward tuning. It is designed to compute
updates that minimize the objective function while constrain-
ing deviations from the previous policy. Additionally, PPO
is well-suited for scenarios involving discrete action spaces.
Consequently, in this work, the DRL agent’s actor network
update process employs the PPO algorithm.

The detailed training process of the DRL agent is outlined
in Algorithm 2. At the start of the DRL agent’s training

10

process, the parameters of both the actor and critic networks
are randomly initialized, and the experience replay buffer is set
up. During each agent training round t = 0, 1, 2, ..., Tag − 1,
sensor k uploads the observation to the server, including the
data collection latency, the communication latency and CPU
frequency. The server consolidates these observations into a
unified state and determines the local iteration decisions as
action for all sensors by inputting the state into the actor
network π(·). Each sensor subsequently executes the specified
number of local iterations based on the action it receives.
Once the local updates are completed, the server evaluates
the test accuracy and calculates the reward, factoring in test
accuracy, overall latency, and local iterations disparity. The
training then transitions to the next state, St+1, while the
experience from round t is stored in the experience replay
buffer. Then server subsequently updates the DRL agent using
the experiences stored in the replay buffer, performing M
times. During this process, the actor network π(·) is updated
by the PPO algorithm and the critic network V (·) is updated
with the following gain function:

max
θv

1

|D|

|D|∑
t=1

[Rt + γV (St+1; θv)− V (St; θv)]
2 (20)

After the DRL agent has been trained for Tag rounds, the
server retains the actor network. During the subsequent DAO-
VFL learning process, as outlined in Algorithm 1, the state
is input into the actor network to generate the output action.
This action is then used to guide the local iteration decisions
of the sensors in each global round, enabling adaptive local
iteration in DAO-VFL.

Computational Cost: The computational cost of Algo-
rithm 2 consists of three main phases: the Sampling Phase
(Osp), the Function Optimization Phase (Oop), and the Ad-
vantage Estimation Phase (Oae). These correspond to the three
primary sub-modules updated in the PPO algorithm. Specifi-
cally, the sampling phase has complexity Osp = Tag ·dac ·dob,
where Tag is the number of agent training rounds, dac is
the action space dimension, and dob is the observation space
dimension. The function optimization phase has complexity
Oop = Tag · D, where D denotes the size of the replay buffer.
The advantage estimation phase has complexity Oae = Tag .
In large-scale IIoT deployments, the term dac · dob becomes
relatively negligible. Therefore, the overall computational cost
of Algorithm 2 can be approximated as O(Tag · D).

VII. EXPERIMENTS

In this section, we present the experimental evaluation of
the DAO-VFL algorithm. The experiments were conducted on
an Ubuntu 18.04 machine equipped with an Intel Core i7-
10700KF 3.8GHz CPU and a GeForce RTX 3070 GPU. The
model training module was built upon PyTorch. The detailed
experimental settings are outlined below.

A. Datasets

To simulate DAO-VFL in IIoT assembly line scenarios,
we utilize the CIFAR-10 dataset, a widely used benchmark,

alongside the real-world IIoT sensor-based dataset, C-MAPSS.
Detailed descriptions of both datasets are provided below.

CIFAR-10: The CIFAR-10 dataset is widely used for
image classification tasks, containing a total of 60,000 32x32
color images in 10 distinct classes. In the training setup, 4
sensors are involved, with each sensor handling a specific
quadrant of every image. This setup resembles a multi-camera
system that collectively acquires full visual information. At
each global round, the trained models are evaluated on the
test dataset to measure the current test accuracy.

C-MAPSS: The C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) dataset [62], created by NASA,
is extensively utilized in research on Remaining Useful Life
(RUL) prediction, particularly in the field of aerospace engi-
neering for prognostics. This dataset models the degradation
processes in aircraft turbofan engines under a range of op-
erational and fault conditions. It contains four subsets, each
varying in the number of operating and fault conditions, with
each subset divided into training and test sets. For our exper-
iments, we use the FD002 subset, consisting of 50,119 data
samples for training and 30,365 data samples for testing. Each
row in the dataset provides a snapshot from a single operating
cycle and contains 27 columns: the first column indicates
engine ID, the second the current operational cycle number,
columns 3-5 represent three operational settings influencing
engine performance, columns 6-26 capture readings from 21
sensors, and the 27th column shows the actual RUL. In this
setup, we assume the data is collected among 2 sensors. After
removing irrelevant features, the first sensor is assigned the
first 10 columns as feature, while the second sensor receives
the remaining 10. This setup reflects a realistic industrial
scenario where different sensors collect distinct aspects of the
same product’s condition.

Each time series begins with the engine operating under
normal conditions, with a fault developing at an unknown point
in time. In the training set, this fault progresses in severity until
it results in system failure. In the test set, data is available up
to a point shortly before failure. The objective is to predict
the number of operational cycles remaining before failure in
the test data. The performance of the RUL estimation model
is evaluated using Root Mean Square Error (RMSE), a widely
used metric for assessing RUL estimation.

B. Online Data Generation

In the experiment, operating within an online learning
scenario requires the training dataset to be dynamic, with
data collected at the start of each global round. To ensure
sufficient data samples for good training performance, we
collect the initial dataset at the beginning of the training
process. Considering the differences in dataset types and sizes,
distinct online data generation methods are employed for the
CIFAR-10 and C-MAPSS datasets. Details for each case are
provided below.

CIFAR-10: For the CIFAR-10 dataset, as the data samples
are independent and lack time-series correlation, we adopt a
fixed-size training dataset approach for each global round. In
this approach, for every new data sample added, an equal

11

number of older data samples are removed. The initial training
dataset contains 5,000 samples. Starting from the first global
round, each sensor collects 200 new data samples correspond-
ing to its partial features and removes 200 old data samples
in each global round. This ensures that training dataset is
consistently updated every global round with the same amount
of data samples. Similarly, the test dataset is updated in the
same manner every global round.

C-MAPSS: For the C-MAPSS dataset, where data samples
are interconnected due to their representation of the RUL of a
aircraft turbofan engines over time, we adopt an incremental
training dataset approach. In this case, the training dataset
gradually accumulates new data samples until it encompasses
the entire original training dataset. The initial training dataset
contains 1,000 samples. After the first global round, each
sensor collects 100 new data samples for the corresponding
partial features in each subsequent global round. For the test
dataset, the full set of samples from the original test dataset
is used in this case.

C. Model Details

Here, we will individually present all the models used in
our experiments, including the feature model, head model, de-
noising autoencoder model, and the Actor and Critic network
models for DRL, separately for the two datasets.

CIFAR-10: The feature model consists of 13 convolutional
layers followed by pooling layers. It concludes with fully
connected layers, and outputs a feature embedding of size
4096. The head model is a single fully connected layer that
takes the concatenated feature embeddings from all sensors
(4096 × 4) and maps them to the final 10 classes. The
feature and head model employs the OGD optimizer with
a learning rate of 0.01. The denoising autoencoder model
includes an encoder with three fully connected layers, taking
an input of size 4096 and producing an output of size 512.
It also features a decoder with three fully connected layers,
taking an input of size 512 and generating an output of size
4096. The DAE model employs the Adam optimizer with a
learning rate of 0.01. The Actor network consists of three fully
connected layers, each with 64 neurons. The input size of the
Actor network corresponds to the state size, while the output
size matches the action size. Similarly, the Critic network
comprises three fully connected layers with 64 neurons each.
It takes the state as input and outputs a single state-value,
estimating the expected return from a given state under the
current policy. The Actor model uses the Adam optimizer
with a learning rate of 0.0001, while the Critic model uses
the Adam optimizer with a learning rate of 0.001.

C-MAPSS: The feature model consists of two convolu-
tional layers with 8 and 14 channels, respectively, followed
by a flattening layer that outputs a feature embedding of size
28 for each sensor. The head model is a single fully connected
layer that processes the concatenated feature embeddings
from all sensors (28 × 2) and maps them to the final 131
classes for the classification task. The feature and head model
employs the OGD optimizer with a learning rate of 0.01
The denoising autoencoder model includes an encoder with

three fully connected layers, taking an input of size 28 and
producing an output of size 3. It also features a decoder with
three fully connected layers, which takes an input of size
3 and reconstructs an output of size 28. The DAE model
employs the Adam optimizer with a learning rate of 0.01. The
Actor and Critic networks share a similar structure to those
described earlier, with the only difference being the size of
the action space, which varies depending on the number of
sensors involved. The Actor model uses the Adam optimizer
with a learning rate of 0.0001, while the Critic model uses the
Adam optimizer with a learning rate of 0.001.

For the reader’s convenience, we summarize several key
experimental parameters in the following Table III, based on
the discussion above.

TABLE III: Key Parameters in Experiments

Parameter CIFAR-10 C-MAPSS

Size of initial dataset 5000 1000
Size of new arrival data 200 100

Size of feature embedding 4096 28
Classification class 10 131
Optimizer (DAO) OGD (0.01) OGD (0.01)
Optimizer (DAE) Adam (0.01) Adam (0.01)
Optimizer (Actor) Adam (0.0001) Adam (0.0001)
Optimizer (Critic) Adam (0.001) Adam (0.001)

D. Environment Details

Here, we address the environment setup considerations for
the adaptive local iteration decisions part. The setup focuses
on designing collection latency, communication latency, and
computation latency. To ensure a balanced contribution from
each component and prevent any single factor from dominating
due to significantly higher values, we adjust their values to be
of the same order of magnitude. For collection latency, we set
µ0 = 2, and µ is assigned a random value between [2, 4].
For communication latency, we set the number of weights
Wfe = 1×105, total bandwidth B = 1×107HZ, transmission
power pk = 1W, noise power σ2 = 5 × 10−2W, and the
channel gain is a random value between [1× 10−4, 1× 10−5],
varying across sensors and rounds. For computation latency,
we set the number of CPU cycles for a single model weight
C = 1000 and the number of weights in the local model to
Wlc = 5× 105, the CPU frequency of sensor is selected from
two categories: high performance sensors are chosen randomly
from [2×107, 4×107], and ow-performance sensors are chosen
from [1× 107, 3× 107] in each global round.

To summarize, the setup reflects the sensor heterogeneity
and communication environment variations, specifically in
terms of channel gain and CPU frequency, which align with
the challenges present in IIoT-based assembly lines.

E. Benchmarks

In the experiment, the following benchmarks are employed
for performance comparison. Since the two key features of
the DAO-VFL algorithm: noise reduction and adaptive local
iteration decisions are essentially independent and do not

12

influence each other, a control variable approach is employed
to design independent benchmarks for comparison. We begin
by presenting the benchmarks related to noise reduction part.

Noise Excluded (NE). In this approach, the communica-
tion process assumes no noise impact, enabling the server to
receive noise-free feature embeddings from the sensors.

Noise Included (NI). In this approach, communication
noise is not addressed, resulting in the server receiving noisy
feature embeddings from the sensors, which are then used
in subsequent processes. Here, we consider using a uniform
scalar quantizer to model the noise added to the feature embed-
dings, where the noise level is influenced by the quantization
level. A smaller quantization level corresponds to higher noise.

Next, we will present the benchmarks related to adaptive
local iteration decisions part.

Homogeneity (HO). In this approach, all sensors are
trained using the same maximum number of fixed local
iterations Et,k = Emax. This scenario completely disregards
the impact of total latency.

Heterogeneity (HE). In this approach, sensors are trained
with significantly different predetermined numbers of fixed
local iterations. Specifically, one sensor is trained with Emax,
while all other sensors perform the minimum local iterations,
set as Et,k = 1.

F. Simulation Results

Next, we present the experimental results of DAO-VFL,
starting with an analysis of the impact of noise reduction on
learning performance. To ensure a controlled comparison, we
initially disregard the effect of local iteration decisions and
assume that both our proposed method and the benchmarks
follow identical local iteration decisions. All simulation results
are averaged over 10 random runs.

Performance Comparison (Noise Reduction). We first
evaluate the learning performance between proposed algorithm
and benchmarks with Et,k = 2 and Tdl = 40. Given the
aforementioned simulation setup, the performance comparison
between DAO-VFL and benchmarks is shown in Fig. 6(a)
and Fig. 6(b) based on C-MAPSS dataset and the CIFAR-10
dataset, respectively. From both figures, several key observa-
tions can be drawn. First, we observe that noise significantly
impacts learning performance across all datasets. This effect is
particularly pronounced in the case of the C-MAPSS dataset,
where failing to address noise can even hinder convergence.
Second, we observe that the learning performance of the
DAO-NR approach varies across different datasets. For the C-
MAPSS dataset, the DAO-NR approach effectively mitigates
the impact of noise, achieving learning performance compa-
rable to that of the NE. For the CIFAR-10 dataset, the DAO-
NR approach not only eliminates the effect of noise but also
further enhances learning performance. This improvement may
be attributed to the regularization effect of the DAE and its
robust feature learning capabilities. In summary, the DAO-NR
approach for noise reduction is both effective and essential for
mitigating noise during online VFL training process.

Impact of Denoising Learning Period Tdl. In this sec-
tion, we evaluate the impact of denoising learning period

0 50 100 150 200
Number of Rounds

30

35

40

45

50

55

60

Te
st

 L
os

s (
RM

SE
)

NE
NI
DAO-NR

(a) Test Loss with C-MAPSS

0 50 100 150 200
Number of Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

NE
NI
DAO-NR

(b) Test Accuracy with CIFAR-10

Fig. 6: Performance Comparison of DAO-VFL and Bench-
marks Considering Noise Reduction Effects.

Tdl ∈ [20, 40] on the learning performance. Fig. 7(a) and
Fig. 7(b) depict the relationship between test loss/accuracy
and the denoising learning period Tdl for the C-MAPSS
and CIFAR-10 datasets, respectively. The results indicate that
extending the denoising learning period Tdl improves learning
performance in both cases. Notably, the improvement is more
pronounced for the C-MAPSS dataset than for the CIFAR-10
dataset. This difference may be attributed to the incremental
dataset approach used for the C-MAPSS dataset, where the
increasing data volume significantly enhances the training
of the DAE. In contrast, the CIFAR-10 dataset employs a
fixed-size dataset approach, which limits the amount of data
available for training the DAE.

0 50 100 150 200
Number of Rounds

35

40

45

50

55

Te
st

 L
os

e
(R

M
SE

)

Tdl = 20
Tdl = 40

(a) Test Loss with C-MAPSS

0 50 100 150 200
Number of Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y
Tdl = 20
Tdl = 40

(b) Test Accuracy with CIFAR-10

Fig. 7: Performance Comparison of DAO-VFL and Bench-
marks with Different Denoising Learning Period Tdl.

Next, we will examine the impact of local iteration de-
cisions on learning performance. To ensure consistency, we
control variables so that the effect of noise reduction remains
the same for both DAO-VFL and the benchmarks. We begin
by comparing the learning performance between the adaptive
local iteration decisions, derived using PPO, with the previ-
ously introduced benchmarks.

Performance Comparison (Adaptive Iterations). In this
section, we evaluate the learning performance of DAO-PPO
compared with the benchmarks HO and HE. Using the sim-
ulation setup described earlier, we present the performance
comparison between DAO-PPO and the benchmarks, consid-
ering the local iteration decisions, is illustrated in Fig. 8(a)
and Fig. 8(b) based on C-MAPSS dataset and the CIFAR-10
dataset, respectively. We observe that the learning performance
of DAO-PPO is better than that of HE throughout the learning
process but not as good as HO. This is because DAO-PPO does
not completely eliminate local iteration disparity as HO does,
leading to slightly inferior performance compared to HO. In
the following experimental results on total latency and reward,

13

we will demonstrate the advantages of using DAO-PPO.

0 50 100 150 200
Number of Rounds

30

35

40

45

50

Te
st

 L
os

s (
RM

SE
)

PPO
HO
HE

(a) Test Loss with C-MAPSS

0 50 100 150 200
Number of Rounds

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

PPO
HO
HE

(b) Test Accuracy with CIFAR-10

Fig. 8: Performance Comparison of DAO-VFL and Bench-
marks Considering Adaptive Local Iteration Decision.

Comparison of Total Latency. In this section, we com-
pare the total latency of DAO-PPO with benchmarks within a
single run, focusing on two key metrics: per-round total latency
and average total latency. Fig.9(a) and Fig.9(b) illustrate
the per-round total latency for the C-MAPSS and CIFAR-
10 datasets, respectively, while Fig.9(c) and Fig.9(d) present
the average total latency for the C-MAPSS and CIFAR-10
dataset. The experimental results reveal two findings: first,
DAO-PPO outperforms both HO and HE in terms of per-round
and average total latency, demonstrating its effectiveness in
reducing overall latency; second, HE slightly surpasses HO in
per-round and average total latency, which can be attributed
to occasional rounds where the sensor with the minimum
local iteration decision avoids becoming a bottleneck, thereby
reducing the overall latency.

0 50 100 150 200
Number of Rounds

10

20

30

40

50

To
ta

l L
at

en
cy

 (m
s)

PPO
HO
HE

(a) Per-Round Total Latency with C-
MAPSS

0 50 100 150 200
Number of Rounds

10

20

30

40

50

To
ta

l L
at

en
cy

 (m
s)

PPO
HO
HE

(b) Per-Round Total Latency with
CIFAR-10

PPO HO HE
Category

0

5

10

15

20

25

30

Av
er

ag
e

To
ta

l L
at

en
cy

 (m
s)

20.82

27.03 26.85

(c) Average Total Latency with C-
MAPSS

PPO HO HE
Category

0

5

10

15

20

25

30

Av
er

ag
e

To
ta

l L
at

en
cy

 (m
s)

21.68

29.57 29.02

(d) Average Total Latency with
CIFAR-10

Fig. 9: Comparison of Total Latency.
Comparison of Reward. In this section, we compare the

reward of DAO-PPO with benchmarks within a single run.
The evaluation focuses on two key metrics: per-round reward
and average reward. Fig. 10(a) and Fig. 10(b) present the
per-round reward for the C-MAPSS and CIFAR-10 dataset,
while Fig. 10(c) and Fig. 10(d) show the average reward for
the C-MAPSS and CIFAR-10 dataset. The results reveal two

key findings: first, DAO-PPO achieves higher per-round and
average rewards compared to HO and HE, as its learning
objective is to maximize overall reward by effectively bal-
ancing learning performance, total latency, and local iteration
disparity. Second, unlike the total latency results where HE
and HO are relatively close, HO significantly outperforms HE
in terms of reward. This is because HO is unaffected by local
iteration disparity, whereas HE is impacted by it.

0 50 100 150 200
Number of Rounds

10

20

30

40

50

60

Re
wa

rd

PPO
HO
HE

(a) Per-Round Reward with C-
MAPSS

0 50 100 150 200
Number of Rounds

20

40

60

80

100

Re
wa

rd

PPO
HO
HE

(b) Per-Round Reward with CIFAR-
10

PPO HO HE
Category

0

10

20

30

40

Av
er

ag
e

Re
wa

rd

37.75
34.81

25.48

(c) Average Reward with C-MAPSS

PPO HO HE
Category

0

20

40

60

80

Av
er

ag
e

Re
wa

rd

77.87
72.37

62.78

(d) Average Reward with CIFAR-10

Fig. 10: Comparison of Reward.

The experimental results above demonstrate the superiority
of the proposed DAO-VFL algorithm over its corresponding
benchmarks in both noise reduction and adaptive local iteration
decision-making.

Discussion on Sensor or Network Failure: In some cases,
sensors may experience failures during training, and network
connectivity issues can also arise. To mitigate the impact of
sensor failures, deploying redundant sensors or sensor clusters
can enhance system robustness and maintain training continu-
ity. For network-related failures, implementing more reliable
wired connections in key point can enhance communication
stability and reduce the risk of data transmission disruptions.

VIII. CONCLUSION

In this work, we proposed the DAO-VFL algorithm to ad-
dress key challenges in real-world IIoT scenarios, specifically
focusing on multi-sensor co-training framework for industrial
assembly lines. In addition to the inherent challenge of inte-
grating online learning with VFL, we tackled critical issues
prevalent in industrial environments, such as communication
noise and sensor heterogeneity. To mitigate the impact of
communication noise, we employed a denoising autoencoder
to reduce noise in feature embeddings during the training
process. To address sensor heterogeneity, we leveraged deep
reinforcement learning to determine local iteration decisions
for each sensor as actions. This approach reduces total latency
and local iteration disparity while maintaining robust learning

14

performance. Our findings are supported by detailed theo-
retical analysis and extensive experimental validation. Future
research will focus on the development of a testbed and
optimizing performance in real-world industrial assembly line
environments using actual industrial data, aiming to advance
intelligent solutions for IIoT applications.

REFERENCES

[1] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial
internet of things (iiot): An analysis framework,” Computers in
Industry, vol. 101, pp. 1–12, 2018.

[2] Y. Lu, “Industry 4.0: A survey on technologies, applications and open
research issues,” Journal of Industrial Information Integration, vol. 6,
pp. 1–10, 2017.

[3] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully au-
tonomous driving: Systems and algorithms,” in 2011 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2011, pp. 163–168.

[4] F. Al-Turjman and S. Alturjman, “Context-sensitive access in indus-
trial internet of things (iiot) healthcare applications,” IEEE Transac-
tions on Industrial Informatics, vol. 14, no. 6, pp. 2736–2744, 2018.

[5] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang,
Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile edge
networks: A comprehensive survey,” IEEE Communications Surveys
and Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.

[6] Y. Liu, Y. Kang, T. Zou, Y. Pu, Y. He, X. Ye, Y. Ouyang, Y.-Q. Zhang,
and Q. Yang, “Vertical federated learning: Concepts, advances, and
challenges,” IEEE Transactions on Knowledge and Data Engineering,
2024.

[7] K. Wei, J. Li, C. Ma, M. Ding, S. Wei, F. Wu, G. Chen, and T. Ran-
baduge, “Vertical federated learning: challenges, methodologies and
experiments,” arXiv preprint arXiv:2202.04309, 2022.

[8] Y. Li, S. Wang, C.-Y. Chi, and T. Q. Quek, “Differentially private
federated learning in edge networks: The perspective of noise reduc-
tion,” IEEE Network, vol. 36, no. 5, pp. 167–172, 2022.

[9] H. Wu, X. Lyu, and H. Tian, “Online optimization of wireless
powered mobile-edge computing for heterogeneous industrial internet
of things,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9880–
9892, 2019.

[10] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “In-
dustrial internet of things: Challenges, opportunities, and directions,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 11, pp.
4724–4734, 2018.

[11] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, D. Niy-
ato, and H. V. Poor, “Federated learning for industrial internet of
things in future industries,” IEEE Wireless Communications, vol. 28,
no. 6, pp. 192–199, 2021.

[12] P. Boobalan, S. P. Ramu, Q.-V. Pham, K. Dev, S. Pandya, P. K. R.
Maddikunta, T. R. Gadekallu, and T. Huynh-The, “Fusion of feder-
ated learning and industrial internet of things: A survey,” Computer
Networks, vol. 212, p. 109048, 2022.

[13] I. Kevin, K. Wang, X. Zhou, W. Liang, Z. Yan, and J. She, “Federated
transfer learning based cross-domain prediction for smart manufac-
turing,” IEEE Transactions on Industrial Informatics, vol. 18, no. 6,
pp. 4088–4096, 2021.

[14] C. Xu, Y. Qu, T. H. Luan, P. W. Eklund, Y. Xiang, and L. Gao,
“An efficient and reliable asynchronous federated learning scheme
for smart public transportation,” IEEE Transactions on Vehicular
Technology, vol. 72, no. 5, pp. 6584–6598, 2022.

[15] Z. Su, Y. Wang, T. H. Luan, N. Zhang, F. Li, T. Chen, and H. Cao,
“Secure and efficient federated learning for smart grid with edge-
cloud collaboration,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 2, pp. 1333–1344, 2021.

[16] X. Wang, S. Garg, H. Lin, J. Hu, G. Kaddoum, M. J. Piran, and M. S.
Hossain, “Toward accurate anomaly detection in industrial internet of
things using hierarchical federated learning,” IEEE Internet of Things
Journal, vol. 9, no. 10, pp. 7110–7119, 2021.

[17] S. U. Khan, C. E. Garca, T. Hwang, and I. Koo, “Radio environment
map construction based on privacy-centric federated learning,” IEEE
Access, vol. 12, pp. 28 109–28 121, 2024.

[18] J. Mao, Z. Wei, B. Li, R. Zhang, and L. Song, “Towards ever-
evolution network threats: a hierarchical federated class-incremental
learning approach for network intrusion detection in iiot,” IEEE
Internet of Things Journal, 2024.

[19] J. Zhang, C. Luo, M. Carpenter, and G. Min, “Federated learning for
distributed iiot intrusion detection using transfer approaches,” IEEE
Transactions on Industrial Informatics, vol. 19, no. 7, pp. 8159–8169,
2022.

[20] Y. Liu, T. Dillon, W. Yu, W. Rahayu, and F. Mostafa, “Noise removal
in the presence of significant anomalies for industrial iot sensor data
in manufacturing,” IEEE Internet of Things Journal, vol. 7, no. 8,
pp. 7084–7096, 2020.

[21] H. Wang, J. Bian, and J. Xu, “On the local cache update rules in
streaming federated learning,” IEEE Internet of Things Journal, 2023.

[22] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith,
and B. Thorne, “Private federated learning on vertically partitioned
data via entity resolution and additively homomorphic encryption,”
CoRR, vol. abs/1711.10677, 2017.

[23] H. Zhu, H. Zhang, and Y. Jin, “From federated learning to federated
neural architecture search: a survey,” Complex & Intelligent Systems,
vol. 7, no. 2, pp. 639–657, 2021.

[24] S. Feng, “Vertical federated learning-based feature selection with
non-overlapping sample utilization,” Expert Systems with Applica-
tions, vol. 208, p. 118097, 2022.

[25] Y. Kang, Y. Liu, and X. Liang, “Fedcvt: semi-supervised vertical
federated learning with cross-view training,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 13, no. 4, pp. 1–16,
2022.

[26] J. Li, R. Deng, T. Zang, M. Kong, and K. Zhu, “Efficient and secure
contribution estimation in vertical federated learning,” in Proceedings
of the 33rd ACM International Conference on Information and
Knowledge Management, 2024, pp. 1205–1214.

[27] C. Fu, X. Zhang, S. Ji, J. Chen, J. Wu, S. Guo, J. Zhou, A. X.
Liu, and T. Wang, “Label inference attacks against vertical federated
learning,” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 1397–1414.

[28] P. Ye, Z. Jiang, W. Wang, B. Li, and B. Li, “Feature reconstruction
attacks and countermeasures of dnn training in vertical federated
learning,” IEEE Transactions on Dependable and Secure Computing,
2024.

[29] T. Castiglia, S. Wang, and S. Patterson, “Flexible vertical federated
learning with heterogeneous parties,” IEEE Transactions on Neural
Networks and Learning Systems, 2023.

[30] J. Zhang, S. Guo, Z. Qu, D. Zeng, H. Wang, Q. Liu, and A. Y.
Zomaya, “Adaptive vertical federated learning on unbalanced fea-
tures,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 12, pp. 4006–4018, 2022.

[31] T. J. Castiglia, A. Das, S. Wang, and S. Patterson, “Compressed-vfl:
Communication-efficient learning with vertically partitioned data,” in
International Conference on Machine Learning. PMLR, 2022, pp.
2738–2766.

[32] H. Wang, J. Bian, and L. Wang, “Computation and communication
efficient lightweighting vertical federated learning,” arXiv preprint
arXiv:2404.00466, 2024.

[33] J. Cui, C. Chen, L. Lyu, C. Yang, and W. Li, “Exploiting data sparsity
in secure cross-platform social recommendation,” Advances in Neural
Information Processing Systems, vol. 34, pp. 10 524–10 534, 2021.

[34] W. Ou, J. Zeng, Z. Guo, W. Yan, D. Liu, and S. Fuentes, “A
homomorphic-encryption-based vertical federated learning scheme
for rick management,” Computer Science and Information Systems,
vol. 17, no. 3, pp. 819–834, 2020.

[35] T. Chen, X. Jin, Y. Sun, and W. Yin, “Vafl: a method of vertical
asynchronous federated learning,” arXiv preprint arXiv:2007.06081,
2020.

15

[36] J. Jiang, L. Burkhalter, F. Fu, B. Ding, B. Du, A. Hithnawi, B. Li, and
C. Zhang, “Vf-ps: How to select important participants in vertical
federated learning, efficiently and securely?” Advances in Neural
Information Processing Systems, vol. 35, pp. 2088–2101, 2022.

[37] Y. Xi, Y. Guo, S. Xu, C. Cai, and X. Jia, “Private sample alignment
for vertical federated learning: An efficient and reliable realization,”
IEEE Transactions on Information Forensics and Security, 2025.

[38] D. Sahoo, Q. Pham, J. Lu, and S. C. Hoi, “Online deep learning:
learning deep neural networks on the fly,” Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence
(IJCAI-18), 2018.

[39] S. Hong and J. Chae, “Communication-efficient randomized algo-
rithm for multi-kernel online federated learning,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp.
9872–9886, 2021.

[40] D. Kwon, J. Park, and S. Hong, “Tighter regret analysis and opti-
mization of online federated learning,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023.

[41] A. Mitra, H. Hassani, and G. J. Pappas, “Online federated learning,”
in 2021 60th IEEE Conference on Decision and Control (CDC).
IEEE, 2021, pp. 4083–4090.

[42] H. Wang and J. Xu, “Online vertical federated learning for cooper-
ative spectrum sensing,” IEEE Transactions on Cognitive Communi-
cations and Networking, 2024.

[43] J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the
noise reduction wiener filter,” IEEE Transactions on audio, speech,
and language processing, vol. 14, no. 4, pp. 1218–1234, 2006.

[44] X. Ji, Z. Zhu, W. Xi, O. Gadyatskaya, Z. Song, Y. Cai, and Y. Liu,
“Fedfixer: mitigating heterogeneous label noise in federated learn-
ing,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 38, no. 11, 2024, pp. 12 830–12 838.

[45] J. Goldberger and E. Ben-Reuven, “Training deep neural-networks
using a noise adaptation layer,” in International conference on
learning representations, 2017.

[46] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu,
“Making deep neural networks robust to label noise: A loss correction
approach,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 1944–1952.

[47] X. Wei and C. Shen, “Federated learning over noisy channels:
Convergence analysis and design examples,” IEEE Transactions on
Cognitive Communications and Networking, vol. 8, no. 2, pp. 1253–
1268, 2022.

[48] F. Ang, L. Chen, N. Zhao, Y. Chen, W. Wang, and F. R. Yu, “Robust
federated learning with noisy communication,” IEEE Transactions on
Communications, vol. 68, no. 6, pp. 3452–3464, 2020.

[49] V. P. Chellapandi, A. Upadhyay, A. Hashemi, and S. H. Żak,
“Fednmut–federated noisy model update tracking convergence anal-
ysis,” arXiv preprint arXiv:2403.13247, 2024.

[50] J. Li, Z. Chen, K. F. E. Chong, B. Das, T. Q. Quek, and H. H. Yang,
“Robust federated learning over the air: Combating heavy-tailed noise
with median anchored clipping,” arXiv preprint arXiv:2409.15100,
2024.

[51] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Pro-
ceedings of the 25th international conference on Machine learning,
2008, pp. 1096–1103.

[52] M. Zhao, G. Cao, X. Huang, and L. Yang, “Hybrid transformer-cnn
for real image denoising,” IEEE Signal Processing Letters, vol. 29,
pp. 1252–1256, 2022.

[53] M. Cheffena, “Industrial wireless communications over the millimeter
wave spectrum: opportunities and challenges,” IEEE Communications
Magazine, vol. 54, no. 9, pp. 66–72, 2016.

[54] Y. Ying and M. Pontil, “Online gradient descent learning algorithms,”
Foundations of Computational Mathematics, vol. 8, pp. 561–596,
2008.

[55] R. Zurawski, Industrial communication technology handbook. CRC
Press, 2014.

[56] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Ait-
tala, and T. Aila, “Noise2noise: learning image restoration without
clean data,” IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2965–2974, 2018.

[57] A. Krull, T.-O. Buchholz, and F. Jug, “Noise2void-learning denoising
from single noisy images,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2019, pp. 2129–
2137.

[58] J. Park, D. Kwon, and S. Hong, “Fedqogd: Federated quantized online
gradient descent with distributed time-series data,” in 2022 IEEE
Wireless Communications and Networking Conference (WCNC).
IEEE, 2022, pp. 536–541.

[59] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[60] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in
Neural Information Processing Systems, vol. 12, 1999.

[61] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[62] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propaga-
tion modeling for aircraft engine run-to-failure simulation,” in 2008
International Conference on Prognostics and Health Management.
IEEE, 2008, pp. 1–9.

	Introduction
	Related Work
	FL for Industrial Internet of Things
	Vertical Federated Learning
	Online Federated Learning
	Noise Mitigation Strategies

	System Model
	Denoising and Adaptive Online Vertical Federated Learning
	Feature Embedding Extracting
	Feature Embedding Denoising
	Model Representation Distributing
	Feature and Head Model Updating

	Regret Analysis
	Adaptive Local Iteration Decisions
	Collection Latency
	Communication Latency
	Computation Latency

	Experiments
	Datasets
	Online Data Generation
	Model Details
	Environment Details
	Benchmarks
	Simulation Results

	Conclusion
	References

