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Abstract—Serverless computing provides developers with a maintenance-free approach to resource usage, but it also transfers
resource management responsibility to the cloud platform. However, the fine granularity of serverless function resources can lead to
performance bottlenecks and resource fragmentation on nodes when creating many function containers. This poses challenges in
effectively scaling function resources and optimizing node resource allocation, hindering overall agility. To address these challenges,
we have introduced ComboFunc, an innovative resource scaling system for serverless platforms. ComboFunc associates function with
heterogeneous containers of varying specifications and optimizes their resource combination and placement. This approach not only
selects appropriate nodes for container creation, but also leverages the new feature of Kubernetes In-place Pod Vertical Scaling to
enhance resource scaling agility and efficiency. By allowing a single function to correspond to heterogeneous containers with varying
resource specifications and providing the ability to modify the resource specifications of existing containers in place, ComboFunc
effectively utilizes fragmented resources on nodes. This, in turn, enhances the overall resource utilization of the entire cluster and
improves scaling agility. We also model the problem of combining and placing heterogeneous containers as an NP-hard problem and
design a heuristic solution based on a greedy algorithm that solves it in polynomial time. We implemented a prototype of ComboFunc
on the Kubernetes platform and conducted experiments using real traces on a local cluster. The results demonstrate that, compared to
existing strategies, ComboFunc achieves up to 3.01 × faster function resource scaling and reduces resource costs by up to 42.6%.

Index Terms—Serverless Computing, Resource Management, Container Placement, Auto Scaling.
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1 INTRODUCTION

The advent of serverless computing offers developers a fine-
grained resource utilization model [1], [2]. By deploying
functions on the cloud, developers can invoke them on an
as-needed basis, only incurring costs for actual usage [3], [4].
This paradigm eliminates resource management overhead,
enabling developers to focus on business logic, thereby sig-
nificantly enhancing application development efficiency [5],
[6], [7], [8], [9], [10]. Consequently, the resource manage-
ment responsibility is shifted from developers to the cloud
platform itself [11], [12]. Specifically, the platform needs to
automatically scale function instances to meet performance
demands during workload fluctuations [13], [14], [15]. Fur-
thermore, since functions are typically encapsulated within
containers, an intelligent placement mechanism is necessary
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to ensure efficient resource utilization [3], [13], [16], [17],
[18], [19].

Achieving these goals is challenging. Firstly, function
containers often experience lengthy cold starts, limiting the
agility of resource scaling [20]. Secondly, serverless plat-
forms offer various configuration options, including multi-
concurrency within a single function instance, which com-
plicates container placement. Due to the heterogeneity of
function specifications, inappropriate deployment strategies
can lead to significant resource fragmentation within cluster
nodes, resulting in low utilization [21]. In serverless archi-
tecture, resource needs change with varying function work-
loads, requiring more agile and efficient resource scheduling
strategies [22].

Our experiments with Knative reveal crucial insights
inspiring the development of an enhanced solution. Firstly,
we identify a performance bottleneck during parallel con-
tainer creation on a single node, where interference be-
tween containers results in varying creation speeds across
nodes. As a result, it’s essential to account for node-specific
container creation speeds during placement. By balancing
container creation across different nodes, we can optimize
parallel container creation. Existing research explores factors
like data transmission affinity [23], [24], container image
sharing and distribution [25], [26], and performance interfer-
ence [18], [27] for container placement but often overlooks
container creation speed.

Furthermore, when selecting container specifications
and configuring concurrency, developers face a trade-off
between using small containers with low concurrency and
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large containers with high concurrency. Our findings under-
score the unique advantages of both large and small contain-
ers (Section 2.3). Consequently, we advocate for the design
of a flexible resource combination strategy that leverages the
strengths of both large and small containers to effectively
balance resource scaling speed and utilization efficiency.
This approach dynamically configures container size and
concurrency based on actual conditions, enhancing overall
efficiency.

Finally, we find that dynamically expanding the resource
specifications of existing containers in place is more ef-
ficient than creating new ones for resource scaling [28],
[29]. With the introduction of In-place Pod Vertical Scaling
in Kubernetes v1.27 [30], [31], it has become feasible to
modify a pod’s resource without the need for pod restart.
This advancement allows for increased resource allocation
for existing containers and higher concurrency configura-
tions for larger ones, facilitating swift resource scaling and
enhancing resource response agility. However, if there are
no active containers on the node, we still need to create
new containers. Additionally, in-place pod vertical scaling
depends on the available resources on the node, often
limiting its benefits due to resource shortages. Therefore,
careful selection of function scaling methods is crucial.
Notably, existing works on vertical scaling [32], [33] do not
exploit Kubernetes’s in-place pod vertical scaling feature,
underscoring the motivation behind our research.

Based on our insights, we introduce ComboFunc, a
container resource combination and placement framework
specifically designed for serverless platforms. Its key inno-
vation lies in associating functions with heterogeneous con-
tainers of diverse resource specifications and concurrency,
fully leveraging in-place pod vertical scaling. ComboFunc
dynamically updates deployment plans of function contain-
ers, optimizes container placement, creates new containers
as needed, identifies suitable candidates for in-place pod
vertical scaling, and manages container destruction. Com-
boFunc not only improves function resource scaling but also
reduces serverless platform costs by balancing fragmented
resource utilization within the cluster.

We start by abstracting serverless function services and
formally defining the container resource combination and
placement problem. We introduce a function scaling cost
model to evaluate various container combinations and
placements. To better utilize fragmented cluster resources,
we also design a function resource cost model. Given the
NP-hard nature of the problem, we develop the ”Cost-
based Greedy Algorithm for Joint Resource Combination
and Container Placement”, efficiently generating optimal
container resource combination and placement for each
function’s resource scaling in polynomial time.

To implement ComboFunc, we introduce custom re-
source definitions (CRDs) in Kubernetes that support het-
erogeneous container resource combinations and in-place
vertical scaling. We also develop a prototype system of
ComboFunc. Through a series of trace-based experiments
on a local Kubernetes cluster, we find that ComboFunc
increases the average speed of function resource scaling by
up to 3.01 ×, reduces function resource cost by up to 42.6%,
and enhances cluster resource utilization. The advantage
of ComboFunc lies in its ability to not only determine the

specifications and quantity of containers but also decide
their placement and the method of resource scaling, whether
it’s creating new containers or performing vertical scaling in
place.

We summarize the contributions of this paper as follows.

• We introduce ComboFunc, a strategy for jointly opti-
mizing heterogeneous container resource combina-
tions and placements. By balancing container cre-
ation across different nodes and integrating the capa-
bility of in-place pod vertical scaling, we enhance the
agility of resource elasticity and resource utilization.

• We formally model the problem of jointly optimizing
heterogeneous container resource combinations and
placements for functions, and propose a heuristic
algorithm based on greedy principles to solve this
problem.

• We develop a prototype system based on Kubernetes
and conduct experiments using trace-driven data
on Knative. The results validate that our approach
outperforms the most advanced strategies in terms
of resource scaling speed, lower resource costs, and
higher resource utilization.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the background and motivation. Section 3
presents the system model and problem formulation. Sec-
tion 4 describes the algorithm for heterogeneous container
resource combination and placement. Section 5 describes the
system’s implementation. Section 6 outlines the experimen-
tal setup and presents the experimental results. Section 7
introduces related work. Section 8 discusses the limitations
and future work. Section 9 provides concluding remarks.

2 BACKGROUND AND MOTIVATION

2.1 Kubernetes-based Serverless Platform
Currently, mainstream open-source serverless platforms
like OpenFaaS, Knative, and OpenFunction are all based
on Kubernetes for managing and deploying functions. In
serverless architecture, functions serve as the primary unit
of execution and are usually encapsulated in containers.
Each function service corresponds to a deployment and
its respective service in Kubernetes. Cloud users trigger
functions by sending HTTP function invocation requests
to the service. During this process, the service distributes
requests to multiple pod instances of the corresponding
function using a load-balancing algorithm. Each function
instance corresponds to a pod in Kubernetes, belonging to
the respective function’s deployment.

Typically, a pod can handle one function invocation re-
quest at a time. However, many serverless platforms now al-
low configuring maximum concurrency for functions. Func-
tion containers are designed to handle incoming requests in
parallel, with each container having a specified maximum
concurrency capacity. When this capacity is reached, addi-
tional containers are generated, leading to request queuing
during this period, as illustrated in Figure 1.

Regarding the isolation of function resources, server-
less platforms leverage Kubernetes’ pod resource limits
to configure and manage function resources. Kubernetes
provides request and limit configurations for CPU and
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Fig. 1: Architecture of a serverless cloud platform.

memory for each pod. By setting resource limits at the
pod level, serverless platforms ensure that each function
instance does not consume excessive computing resources
during runtime, thereby avoiding disruptions to other func-
tions. Additionally, Kubernetes optimizes container place-
ment based on pod resource requests. This resource-limiting
mechanism effectively maintains the stability and reliability
of the platform while also contributing to improved resource
utilization and performance optimization.

2.2 Challenge of Serverless Resource Management
While serverless platforms are highly efficient in handling
varying workloads, they also introduce specific resource
management challenges. Among these challenges, ensuring
that the system responds quickly and efficiently to work-
load changes is crucial. The agility of resource scaling and
the effective utilization of cluster resources are key factors
that significantly impact the performance and efficiency of
serverless platforms.

Lack of scaling agility: Insufficient speed in scaling re-
sources can contribute to a long-tail distribution of function
response time. Typically, serverless platforms adopt passive
autoscaling strategies to adapt to fluctuating workloads [34].
As the workload increases, the platform proactively cre-
ates additional containers to enhance concurrency capacity.
Therefore, fast container resource scaling indicates that the
system can quickly respond to workload changes, thereby
reducing queuing delays. Requests with prolonged queuing
delays contribute to the long-tail distribution of response
time. Thus, improving container resource scaling agility
presents a challenge for cloud platforms.

Under-utilization of node resources: The heterogeneity
of containers poses a challenge in optimizing the utilization
of cluster node resources. In serverless platforms, functions
support various resource specifications, ranging from as
little as 0.1 vCPU and 64 MB of memory to as large as
64 vCPU and 120 GB of memory [35]. Some serverless
platforms even allow simultaneous configuration of CPU
and memory specifications for containers, along with the
maximum concurrency within a single container [36]. This
diversity in container specifications increases the complexity
of container placement. Therefore, it is crucial to design
effective container placement strategies that can handle the
heterogeneity of container configurations and enhance the
resource efficiency of cluster nodes [13], [18], [21].

2.3 Preliminary Observations and Insights
Observation 1. There is a performance bottleneck in intra-node
parallel container creation, which can be improved by using inter-
node parallelism to increase container creation speed. The real-
time speed of container creation on different nodes varies.
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Fig. 2: Container scaling time under different parallelism
levels.

Serverless platforms employ dynamic resource scaling
for functions based on their workloads, which involves the
creation and destruction of multiple function containers
on cluster nodes. However, non-parallelizable steps in the
container creation process limit the speed of container cre-
ation on a single node [17]. To validate this observation, we
conduct experiments to measure the time required to create
various numbers of pods on a node within a Kubernetes
cluster.

We treat creating a certain number of container replicas
on a node as a scaling task. Also, we allow the node to
create multiple scaling tasks and use “Parallelism” to show
the number of scaling tasks running in parallel on a single
node. We set the container creation numbers to 4, 8, and
16 for three scaling tasks, and set the parallelism to 1, 2,
and 4. With this experiment setup, we can explore if there is
performance interference between different scaling tasks on
a node.

The experimental results are shown in Figure 2. From
Figure 2a, we can see that when multiple parallel scaling
tasks create containers on a node at the same time, their
end-to-end container creation time increases proportionally.
Specifically, the bars for parallelism of 1, 2, and 4 increase
in height, and they increase proportionally as the number
of replicas grows. This shows that creating containers for
multiple deployments on the same node interferes with each
other.

Additionally, we calculate the average scaling time for
each container, called per-pod scaling time, by dividing
the total time to create all containers by the total number
of containers created. The experimental results are shown
in Figure 2b. Increasing the parallelism within a node to
create different numbers of containers does not significantly
improve the average creation speed of each container. This
shows that different function scaling tasks on the same node
share the node’s container creation capacity, and parallelism
within a node does not effectively improve container scaling
speed.

At different times, different nodes may be performing
different scaling tasks, so the container creation speed on
different nodes shows heterogeneity. To illustrate this, we
use the Alibaba Cluster Trace [37] as the dataset for function
request invocations to simulate container creation tasks on
different nodes at different times in a Kubernetes cluster.
Our local Kubernetes cluster consists of 5 nodes, with 1
master node and 4 worker nodes for container creation. Dur-
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Fig. 3: Container creation speed varies across time and
space.

ing the experiment, we create the corresponding number of
containers in the local Kubernetes cluster according to the
dataset, and we track and measure the average container
creation speed on four different nodes to understand how
the speed changes over time. As shown in Figure 3a, the
container creation speed on different nodes shows strong
volatility. The container scaling speed is affected by the
elastic tasks on different nodes at different times.

However, from an average perspective, the hardware
of different nodes is similar, and their container creation
capabilities are comparable. Over a longer period, the status
of different nodes is equivalent, so there is no significant
difference in the container creation speed ability of each
node in the long term. As shown in Figure 3b, although
there are differences in the volatility of creation speeds on
different nodes, the average creation speeds over a long
period are roughly similar.

Although the container creation capacity of a single node
is limited, using inter-node parallelism to create containers
with multiple nodes is an effective way to improve resource
scaling efficiency. To illustrate this, we set different node
affinities in the deployment of Kubernetes functions to con-
trol the number of nodes participating in container creation,
and measure the time required to create containers with
different numbers of nodes and replicas. As shown in Fig-
ure 4, increasing the number of nodes involved in container
creation helps reduce the time needed for resource scaling.
This is because different nodes participate in container
creation without performance interference between them.
This demonstrates the necessity of timely and reasonable
allocation of container creation tasks across different nodes
to fully utilize the container creation capacity of different
nodes.

Insight 1. We need to select suitable nodes for container creation
with inter-node parallelism, thereby improving the agility of
resource scaling.

Observation 2. There are advantages to both large containers
and small containers.

When deploying a serverless function, we have the
choice of using small containers with low concurrency or
large containers with high concurrency. For instance, if a
function requires 1 core and 1 GB of memory for a single
concurrent execution, we can either select the minimum
container size of 1 core and 1 GB of memory configured with
concurrency of 1, or we can opt for larger containers with 4
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Fig. 6: Average memory footprint per concurrency under
different levels of concurrency and runtime conditions.

cores and 4 GB of memory, configured with concurrency of
4. While the latency of requests may slightly differ between
containers of different sizes, they can provide the same
concurrent processing capacity. Figure 5 demonstrates that
there is no significant disparity in container creation time
when using different container sizes on a node. This implies
that configuring larger containers enables faster resource
scaling when creating the same number of containers.

Moreover, larger containers exhibit lower average re-
source usage per individual function concurrency. We com-
pare the average memory footprint per single concurrency
for containers of different sizes in both idle and busy states.
As depicted in Figure 6a, it can be observed that in the
idle state, the average memory footprint per concurrency
decreases proportionally as the container size increases.
This is because containers of different sizes have similar
resource footprints when idle, and larger containers can
distribute the resource overhead across all concurrent exe-
cutions. Additionally, Figure 6b shows that even in the busy
state, when containers reach their maximum concurrent
executions, the average resource footprint per single con-
currency remains lower for larger containers. This indicates
that larger containers offer a better performance-to-resource
ratio compared to smaller containers, making them more
cost-effective in terms of resource utilization.

However, larger containers also have drawbacks. Firstly,
using larger containers can result in increased resource
fragmentation within the cluster, as illustrated in Figure 7,
where placing containers of different sizes on a node leads
to varying levels of resource fragmentation. Secondly, the
scheduling criteria for larger containers are more stringent,
making them less flexible compared to smaller containers.
As a result, larger containers have fewer placement options,
which can impact inter-node parallelism during container
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creation and hinder resource elasticity speed.

Insight 2. It motivates us to utilize heterogeneous containers,
combining the benefits of both large and small containers by
enabling a single function to correspond to containers of varying
sizes.

As demonstrated in Figure 8, each colored square rep-
resents a different function pod, and requests for the same
function can be routed to containers with different resource
specifications and concurrency. Compared to the homoge-
neous container combination setup depicted in Figure 7, the
heterogeneous container combination within the same three
nodes can increase total function concurrency and improve
cluster resource utilization.

Observation 3. Compared to creating new containers for re-
source scaling, dynamically adjusting the resource specifications
of existing containers is a more efficient approach.

In v1.27, Kubernetes introduced a new alpha feature
called ”In-place Pod Vertical Scaling”, which allows users
to adjust the CPU and memory resources allocated to pods
without restarting the containers. This improvement signif-
icantly enhances the flexibility and efficiency of dynamic
resource management in Kubernetes. The API now permits
modifications to the CPU and memory resources under the
resources field of pod containers. This means users can ad-
just resources by patching the specifications of running pods
without needing to recreate or restart them. This new feature
not only reduces the complexity of resource adjustments but
also avoids unnecessary service disruptions. Additionally,
recent work [29] has also achieved dynamic allocation and
adjustment of container resources at the kernel level. Conse-
quently, we can increase the resource allocation of existing
containers and adjust their concurrency configurations with-
out restarting them, enabling quick resource scaling and
improving the agility and flexibility of resource scaling.

Nevertheless, this approach is not without limitations.
In-place pod vertical scaling necessitates the presence of
warm containers. In the absence of warm containers, new
containers must still be created. Additionally, the maximum
size for in-place container vertical scaling is contingent upon
the available resources within the node. In many instances,
nodes may lack adequate resource space, thereby diminish-
ing the effectiveness of this approach.

Insight 3. To achieve efficient resource elasticity, a combination
of both container creation and in-place pod vertical scaling is
required.

Building upon these observations and insights, we intro-
duce the core concept of ComboFunc: configuring a single
function to utilize containers with diverse resource specifica-
tions and concurrency settings. This strategy fully leverages
the potential for parallel container creation and in-place ver-
tical scaling on different nodes. The objective is to enhance
resource scaling agility by effectively harnessing the ad-
vantages offered by both large and small containers, while
optimizing the utilization of cluster resources. Through the
joint optimization of container resource combinations and
placements, an optimal resource scheduling scheme can be
achieved.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we define the container resource combina-
tion and placement model to further explore the research
problem. The main notations are shown in Table 1.

3.1 Deployment Plan of Function Containers
In our research, we primarily focus on two key resource
dimensions: CPU and Memory. These resources are cen-
tral to container scheduling and are widely supported
by mainstream container resource schedulers [38], [39],
[40]. Although other resource dimensions, such as micro-
architecture-level cache, memory bandwidth, and disk I/O,
are also important for scheduling optimization, we decided
to exclude these aspects from our study to simplify its scope.

We consider a cluster consisting of many server nodes.
Let N be the set of nodes, where n represents a specific
node, and n ∈ N . Each node in our cluster has a CPU capac-
ity of Cn and a memory capacity of Mn. Each node may host
many services or functions, occupying certain resources.
Therefore, we define Cr

n and Mr
n as the remaining CPU

and memory capacities of node n, respectively. Against this
backdrop, we focus on the resource scaling of a serverless
function f , aiming to create containers for a function f on
different nodes to meet its target concurrency. As function
f correlates with containers of various sizes, we denote the
set of all available container specifications for function f as
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TABLE 1: Main Notations

Notation Definition
N The set of serverless cloud platform cluster nodes
n A server node
Cn CPU capacity of node n
Mn Memory capacity of node n
Cr

n CPU remaining capacity of node n
Mr

n Memory remaining capacity of node n
f A serverless cloud function
Pf Set of container specifications for f
Cp CPU specification of container p
Mp Memory specification of container p
Qp Concurrency specification of container p
Q Total concurrency before scaling
Q′ Total concurrency after scaling
Xnp Number of containers with specification p on node n
Rf (Q) Deployment plan of function f at concurrency of Q
Snp Scaling cost of deploying pod p on node n
Bnp Resource cost of deploying pod p on node n
Dnp Deployment cost of deploying pod p on node n
Sf Total scaling cost of function f
Bf Total resource cost of function f
Df Total deployment cost of function f
Ip Image pulling overhead of container p
λ Trade-off parameter between scaling and resource cost

Pf . For a specific container specification p ∈ P , we use Cp

to represent its CPU size, Mp to represent its memory size,
and Qp to represent its configured concurrency. We use Xnp

to represent the number of containers with specification p
deployed on node n, then we have:{

Xnp = 0, if container p is not deployed on node n

Xnp ≥ 1, if container p is deployed on node n
(1)

The sum of the CPU and memory size of function
containers on each node n must not exceed the remaining
CPU and memory capacities of node n. Hence, we have the
following constraints:

∀n ∈ N ,
∑
p∈Pf

XnpCp ≤ Cr
n (2)

∀n ∈ N ,
∑
p∈Pf

XnpMp ≤ Mr
n (3)

We define the deployment plan of function f as Rf =
{(n, p,Xnp)|n ∈ N, p ∈ Pf}, which records the container
deployment of function f in the cluster. It includes the
placement of containers with different specifications.

Ideally, there should be a container available to handle
each function request upon arrival. To achieve this goal, we
can calculate the required target concurrency based on the
actual function workload.

Therefore, given the target total concurrency for a func-
tion, the key is to find a reasonable container deployment
plan. Let Q represent the target total concurrency of all
function containers. Then we have:∑

p∈Pf

Qp ≥ Q (4)

Definition 1. We define the state Rf (Q) as a feasible container
deployment plan for function f with a total concurrency of Q if
and only if Rf satisfies (1)(2)(3)(4).

According to Definition 1, we understand what container
deployment plan can meet the function concurrency target.

When the workload changes, the target concurrency of
the function also changes accordingly. Suppose the current
container deployment state is Rf (Q), and the scaling task
is to improve function concurrency from Q to Q′. In that
case, we need to find a new feasible container deployment
plan Rf (Q

′). In other words, for different levels of target
concurrency, we need to find a corresponding deployment
plan that matches it. The cloud platform’s task is to update
the existing container deployment plan by creating, destroy-
ing, and in-place scaling containers to align with the target
concurrency.

Finding a feasible deployment plan based on a given
target concurrency is not difficult. The real challenge lies in
finding a more optimized deployment plan. Next, we define
what constitutes a good deployment plan.

3.2 Scaling Cost Model

As discussed earlier, when cloud platforms perform re-
source scheduling for serverless functions, they focus on
improving the agility of resource scaling. The process of
resource scaling is essentially the transition from target con-
currency Q to Q′. Therefore, we establish a resource scaling
cost model to evaluate the effectiveness of transitioning
from the deployment plan Rf (Q) to Rf (Q

′).
To describe the agility of resource scaling, we need to

find an indicator that characterizes the speed of function
concurrency changes. We know that the rate of increase
in function concurrency directly affects the distribution of
function delays. Therefore, we define the scaling cost Sf

as the average time it takes for the function f to complete
the update of its target concurrency, denoted as Sf . For a
container in spec p to be scheduled on node n, its scaling
cost is denoted as Snp, and we have:

Sf =
1∑

p∈Pf
Qp

∑
n∈N

∑
p∈Pf

Xnp · Snp (5)

We know that if a container instance of function f exists
on a node, we can choose to perform in-place pod vertical
scaling, or simply create new containers. In the case of in-
place pod vertical scaling, we introduce the time cost on
node n as τun . For the case of creating new containers, we
introduce the time cost of creating new containers on node n
as τ cn. We know that during the process of container creation,
there is a time expense of pulling the container image
through the network from the image repository, which we
denote as Ip. However, for in-place pod vertical scaling, the
container image does not need to be downloaded. Therefore,
we can express Snp under different conditions as follows:

Snp =

{
τun , if p is in-place vertical scaling
τ cn · kn + Ip, if p is created

(6)

where kn represents the number of inter-node creating
containers to show resource contention during the container
creation process. Now, we find an indicator to evaluate the
agility of function resource scaling. Smaller Sf indicates
lower resource scaling time and faster resource scaling
speed.
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3.3 Resource Cost Model
As mentioned earlier, when cloud platforms make resource
scheduling decisions, their primary consideration is to re-
duce the resource costs [41], [42]. Therefore, we need to find
a method to evaluate the resource cost. Due to the presence
of different sizes of resource fragments in serverless cluster
nodes, their utilization difficulty varies. Consequently, the
resource cost for smaller resource fragments is relatively
cheaper compared to larger ones. It is similar to the pro-
duction of silicon wafers for chips, where the unit price
increases for selecting larger area silicon wafers [43] because
of its scarcity. Based on this principle, we define a function
resource cost model. We link the prices of different node
resources to their resource utilization rates. When a node’s
resource utilization rate is high, we apply an additional
discount to the price, and when the resource utilization rate
is low, we introduce a price hike. As a result, we propose
the following:

βc
n =

Cr
n

Cn
· (1 + x) + (1− Cr

n

Cn
) · (1− x) (7)

βm
n =

Mr
n

Mn
· (1 + x) + (1− Mr

n

Mn
) · (1− x) (8)

Where x ∈ [0, 1] is the maximum percentage of price
fluctuation, βm

n represents the memory price of node n, and
βc
n represents the CPU price of node n. When the resource

utilization is 0%, the price reaches the highest. When the
utilization is 100%, the price reaches the lowest.

We denote the resource cost of a container with specifi-
cation p on node n as Bnp, then we have:

Bnp = βc
n · Cp + βm

n ·Mp (9)

For function f , its total resource cost is Bf , which is the sum
of the resource costs of all its containers, given as:

Bf =
1∑

p∈Pf
Qp

∑
n∈N

∑
p∈Pf

Bnp (10)

With the definition of the function resource cost, we
can guide the resource scheduler to prioritize fragmented
resources in the cluster by minimizing the resource cost,
achieving efficient utilization, and cost optimization of clus-
ter resources.

3.4 Problem Definition
In the previous sections, we establish two models to describe
the resource scaling agility and the resource cost of the func-
tions. Our problem essentially seeks a new container de-
ployment plan while giving the current function container
plan to minimize both function scaling cost and function
resource cost. Since there are two objectives to minimize,
we define the deployment cost Df as a unified optimization
objective, which is the weighted sum of the two costs:

Df = Sf + λ ·Bf (11)

where λ is the trade-off parameter used to adjust the impor-
tance between scaling and resource cost. Now, we can define
the optimization problem to minimize the deployment cost.
Thus, our Function Resource Combination and Placement
Problem (FRCP) is defined as follows:

Definition 2. Problem FRCP is that given the current deploy-
ment plan Rf (Q) of function f , find a new deployment plan
Rf (Q

′) with the corresponding total concurrency Q′:

minDf (12)
subject to: (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)

In this problem, we aim to find a new container de-
ployment plan that meets the given target concurrency Q′

while minimizing the deployment cost, which is a weighted
combination of scaling cost and resource cost. The trade-off
parameter λ allows for flexibility in determining the trade-
off between these two optimization objectives.

3.5 Problem Complexity
We know that even for a simple resource scheduling prob-
lem, finding the optimal solution is NP-hard. The FRCP
studied in this paper is no exception. We provide Theorem 1
to prove the computational complexity of the problem.

Theorem 1. Problem FRCP is NP-hard.

Proof. The multi-dimensional multiple knapsack problem is
a classic optimization problem known to be NP-hard. Its
definition is as follows: Given a set of items N , each item
i ∈ N has multiple attributes, such as weight wi and volume
ei. The set of knapsacks is M , and each knapsack j ∈ M has
multiple capacity constraints, such as weight capacity Wj

and volume capacity Ej . We define the value of each item
i as vi. We define a non-negative integer matrix x, where
xij represents the quantity of item i placed in knapsack j.
The objective is to maximize the total value while satisfying
multiple-dimensional constraints:

max
∑
i∈N

∑
j∈M

vixij (13)

subject to :


∑

i∈N wixij ≤ Wj ,∀j∑
i∈N eixij ≤ Ej ,∀j

xij ∈ Z+

(14)

We consider simplifying our problem in Definition (2)
by removing the (4) constraint. Given an instance
A = (N,M, vi, xij , wi, ei,Wj , Ej) of the knapsack prob-
lem, we can map it to a simplified instance A′ =
(P,N,−Dnp, xnp, Cp,Mp, Cn,Mn) of our problem. The
above mapping can be done in polynomial time. Therefore,
we have constructed a polynomial-time reduction from
the multidimensional knapsack problem to our problem. If
there exists an algorithm that solves problem A′, then it can
also solve the corresponding knapsack problem. Thus, the
multidimensional knapsack problem can be considered a
special case of our problem. Given the NP-hardness of the
multidimensional knapsack problem, Problem FRCP is also
NP-hard.

4 SOLUTION

In the previous sections, we analyze the complexity of the
problem. Due to the large scale of nodes and function con-
tainers in the cluster, finding the global optimal solution can
be a very time-consuming task. To overcome this challenge,
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we adopt a cost-based greedy heuristic algorithm to reduce
computational complexity.

4.1 Cost-based Greedy Algorithm
Our goal is to find a deployment plan for function contain-
ers under resource constraints to minimize the total deploy-
ment cost while ensuring the total concurrent capacity of
the containers reaches the target value. We realize that the
primary objective of the problem is to minimize deployment
costs. Therefore, we select the container specifications and
node combinations with the smallest deployment cost per
unit concurrency for deployment. We denote the deploy-
ment cost of container specification p on node n as Dnp,
Dnp = Snp + λ ·Bnp. Thus, Dnp/Qp represents the deploy-
ment cost per unit concurrency. The smaller this value, the
higher the cost-effectiveness of the container.

By gradually selecting the most cost-effective containers
until the total concurrency of the functions reaches the target
value, we ultimately obtain an optimized container deploy-
ment plan. Despite the intuitive nature of this approach, the
advantages of the greedy algorithm lie in its simplicity and
efficiency. By quickly selecting container deployment com-
binations with minimal costs, we can obtain an approximate
optimal solution within a reasonable time.

Next, we provide a detailed explanation of the steps of
the cost-based greedy algorithm, as shown in Algorithm 1:

Algorithm 1: Cost-based Greedy Algorithm for
Joint Resource Combination and Container Place-
ment

Require: Deployment status Rf (Q), elastic target concurrency Q′

Ensure: Deployment status Rf (Q
′)

1: Initialize Rf (Q
′) = {(n, p,Xnp)|Xnp = 0, n ∈ N, p ∈ Pf}

2: Initialize current total concurrency Qcurr = 0
3: while Qcurr ≤ Q′ do
4: Current minimum value of Dnp/Qp → Dmin

5: Currently selected node Ncurr and pod spec Pcurr

6: for (n, p,Xnp) ∈ Rf (Q
′) do

7: if Cp ≥ Cr
n or Mp ≥Mr

n then
8: continue
9: end if

10: if Dnp/Qp < Dmin then
11: Dmin ← Dnp/Qp

12: Pcurr ← p
13: Ncurr ← n
14: end if
15: end for
16: Update Rf (Q

′) with
(Ncurr, Pcurr, Xnp)← (Ncurr, Pcurr, Xnp + 1)

17: Cn ← Cn − Cp

18: Mn ←Mn −Mp

19: Qcurr ← Qcurr +Qp

20: end while
21: return Rf (Q

′).

In Algorithm 1, we have a set of container configurations
denoted by Pf , and a set of nodes denoted by N . Each
container p has a deployment status Xnp on node n, a
deployment cost Dnp, a concurrency rate Qp, and CPU and
memory requirements Cp and Mp respectively.

In Line 1, we initialize the return value Rf (Q
′), where

all Xnp values are set to 0, indicating that no containers are
deployed initially. In Line 2, we initialize the concurrency
as zero, which means no container is selected. Starting from
Line 3, a while loop begins, and in Line 4, Dmin is created

to store the current best cost-effectiveness ratio. Lines 6
to 15 iterate through all combinations of container specs
and nodes, updating the best cost-effectiveness ratio for the
selected container spec and node. Line 16 is responsible for
updating the container deployment plan in Rf (Q

′), and
Lines 17 to 19 are used to update the node status. When
the target concurrency is exceeded, Line 21 returns the
optimized result of the container deployment plan.

4.2 Algorithm Complexity

Theorem 2. The time complexity of Algorithm 1 is O(Q · |N | ·
|Pf |), where Q represents the target concurrency of function, |N |
represents the number of nodes, and |Pf | represents the number
of available container specifications of function.

Proof. In Algorithm 1, the main loop is a while loop with the
termination condition Qcurr ≤ Q′. In each iteration of the
loop, we iterate through all combinations of elements in the
node-set N and the container configurations Pf , performing
a series of operations with time complexity O(1). Since the
minimum concurrency of containers is 1, in the worst case,
the loop will execute Q times. In the worst case, the total
number of possible container deployment combinations is
|N | × |Pf |. Therefore, the time complexity of the algorithm
is O(Q · |N | · |Pf |).

Theorem 2 demonstrates the time complexity of our al-
gorithm. It indicates that our solution can solve the problem
in polynomial time.

5 IMPLEMENTATION

In this section, we delve into the implementation details of
the entire system, known as ComboFunc.

5.1 System Overview

ComboFunc is a resource scaling system developed using
Go and Python, and it is built on top of Knative. The
code base comprises approximately 3.2K lines of code. The
system architecture of ComboFunc is depicted in Figure 9.
The blue components represent the elements specific to
ComboFunc, while the uncolored components are inher-
ited from Knative Serving, which serves as the underlying
Function-as-a-Service (FaaS) platform. The central decision-
making component of ComboFunc is the Resource Scaler,
responsible for executing Algorithm 1. The Metrics Collector
collects invocation data for various functions from the API
Gateway, calculates the Target Function Concurrency for
each function, and communicates this information to the
Resource Scaler for informed scaling decisions tailored to
heterogeneous containers.

The Load Balancer ensures equitable distribution of
traffic across the heterogeneous containers, thus enabling
effective load balancing. Conversely, the Container Sched-
uler acts as the container scheduler within the Kubernetes
cluster. It executes our deployment strategy, optimizing
the placement of containers on nodes within the cluster.
Furthermore, it leverages the in-place pod vertical scaling
feature to efficiently adjust resource scaling for containers,
resulting in more agile resource management.
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Fig. 9: System architecture of ComboFunc.

5.2 ComboFunc CRDs and Controller

Function scaling involves instructions for retaining, delet-
ing, or in-place vertical scaling of existing containers, as
well as creating any necessary new containers. The imple-
mentation of a function scaling involves sequentially up-
dating the state of all containers associated with a function
based on pod specifications. To simplify the management of
containers belonging to the same function by the Resource
Scaler, we utilize Kubernetes Custom Resource Definition
(CRD) to define ComboFunc resources. A ComboFunc object
represents a function that encompasses multiple pods with
different specifications. In traditional Kubernetes, a group of
containers with identical specifications is typically defined
using deployments. Consequently, a ComboFunc object is a
collection of several deployments. An example YAML file
of a ComboFunc resource object’s CRD is provided in Fig-
ure 10a, illustrating a ComboFunc with three deployments
that vary in CPU, Memory, and Concurrency specifications,
corresponding to distinct values under the functions field
in the diagram.

The ComboFunc Controller employs Kubernetes’ list-
watch mechanism to continuously monitor updates to Com-
boFunc resources, enabling real-time creation, deletion, or
modification of deployment resource objects. However, a
challenge arises because Kubernetes’ in-place pod vertical
scaling mechanism is designed for pod resource objects and
is not directly supported by deployments. To overcome
this limitation, we have introduced InPlaceDeployments
through CRD and developed a CRD Controller to enable
pods within deployments to support the in-place vertical
scaling feature.

InPlaceDeployments follow a similar format to native
deployments, as demonstrated in Figure 10b. The In-
PlaceDeployment Controller’s logic is implemented using
the reconciliation mechanism, akin to native deployments.
The key difference lies in the update process for pods. In-
stead of performing rolling updates by deleting and creating
new pods, the InPlaceDeployment Controller facilitates in-
place upgrades of pods, preserving existing pods whenever
possible. It is important to note that all mentioned CRD
Controllers have been developed using Kubebuilder, the
official scaffolding framework provided by Kubernetes, en-
suring consistency and compatibility within the Kubernetes
ecosystem, as depicted in Figure 11.
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represents the number of nodes, and |Pf | represents the number
of available container specifications of function.

Proof. In Algorithm 1, the main loop is a while loop with the
termination condition Qcurr ≤ Q′. In each iteration of the
loop, we iterate through all combinations of elements in the
node-set N and the container configurations Pf , performing
a series of operations with time complexity O(1). Since the
minimum concurrency of containers is 1, in the worst case,
the loop will execute Q times. In the worst case, the total
number of possible container deployment combinations is
|N | × |Pf |. Therefore, the time complexity of the algorithm
is O(Q · |N | · |Pf |).

Theorem 2 demonstrates the time complexity of our al-
gorithm. It indicates that our solution can solve the problem
in polynomial time.

5 IMPLEMENTATION

5.1 System Overview

apiVersion: xxx.combofunc.com/v1
kind: InPlaceDeployment
metadata:
name: test-inplacedeployment
labels:
app: test-inplacedeployment
namespace: default

spec:
replicas: 4
template:
spec:
containers:
- name: video-processing
image: video-processing:latest
resizePolicy:
- resourceName: "cpu"
restartPolicy: "NotRequired"

resources:
limits:
cpu: "1000m"
memory: "1000Mi"

requests:
cpu: "1000m"
memory: "1000Mi"

Fig. 8: Custom Resource Definition (CRD) for Deployment
with Inplace Vertical Scaling

6 EXPERIMENTAL EVALUATION

In this section, we demonstrate the advantages of Combo-
Func through a series of experiments. We aim to answer the
following research questions (RQs):

• RQ1: Can ComboFunc offer better resource scaling
agility compared to other strategies?

• RQ2: Can ComboFunc reduce function resource cost
compared to other strategies?

• RQ3: Can ComboFunc improve cluster resource uti-
lization compared to other strategies?

apiVersion: xxx.combofunc.com/v1
kind: ComboFunc
metadata:
name: test-combofunc
labels:
app: test-combofunc

namespace: default
spec:
functions:
- resources:

cpu: "100m"
memory: "100Mi"

concurrency: 1
replicas: 2
image: xxx

- resources:
cpu: "200m"
memory: "200Mi"

concurrency: 2
replicas: 1
image: xxx

- resources:
cpu: "100m"
memory: "300Mi"

concurrency: 3
replicas: 3
image: xxx

Fig. 9: Custom Resource Definition (CRD) for ComboFunc

6.1 Experimental Setup

To evaluate our proposed heterogeneous container resource
combination and placement strategy, we consider simulat-
ing a real cluster composed of a series of nodes with varying
resource utilization at different times. For each node, we
configure 16 cores and 32 GB memory for its resource
capacity. We utilize workload trace data of different node
from the dataset [27] and randomly select 20 nodes and 1000
timestamps to initialize the remaining resources of different
nodes. Through the test in Kubernetes, the time of inplace
vertical scaling is less than 0.01s, so we set the value of τun
in (6) to 0.01.

To simulate the scaling tasks of different functions at
different times, we select 10 different types of functions
from [28], [29], each with distinct resource requirements. We
randomly choose varying degrees of workload variations
from the Azure Function Dataset [30] to simulate the scal-
ing process of these 10 functions at different timestamps.
Throughout this process, we record the scaling time and
resource cost incurred by the scaling tasks of different
functions at various timestamps.

We select the following baselines for comparison with
ComboFunc:

• Knative [31]: The default scheduling strategy of the
serverless platform Knative. It is based on kube-
scheduler for scheduling and utilizes homogeneous
containers without inplace pod vertical scaling.

• ComboFunc w/o Inplace: The strategy of Combo-
Func utilizes heterogeneous containers without in-
place pod vertical scaling.

• First Fit [32]: A scheduling algorithm that determines
the placement of containers by selecting the first
available node that can accommodate the resource
requirements of the container, without inplace pod
vertical scaling.

(a) ComboFunc CRD.
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apiVersion: xxx.combofunc.com/v1
kind: InPlaceDeployment
metadata:
name: test-inplacedeployment
labels:
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namespace: default
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spec:
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In this section, we demonstrate the advantages of Combo-
Func through a series of experiments. We aim to answer the
following research questions (RQs):

• RQ1: Can ComboFunc offer better resource scaling
agility compared to other strategies?

• RQ2: Can ComboFunc reduce function resource cost
compared to other strategies?

• RQ3: Can ComboFunc improve cluster resource uti-
lization compared to other strategies?

apiVersion: xxx.combofunc.com/v1
kind: ComboFunc
metadata:
name: test-combofunc
labels:
app: test-combofunc

namespace: default
spec:
functions:
- resources:

cpu: "100m"
memory: "100Mi"

concurrency: 1
replicas: 2
image: xxx

- resources:
cpu: "200m"
memory: "200Mi"
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image: xxx

- resources:
cpu: "100m"
memory: "300Mi"

concurrency: 3
replicas: 3
image: xxx

Fig. 9: Custom Resource Definition (CRD) for ComboFunc

6.1 Experimental Setup

To evaluate our proposed heterogeneous container resource
combination and placement strategy, we consider simulat-
ing a real cluster composed of a series of nodes with varying
resource utilization at different times. For each node, we
configure 16 cores and 32 GB memory for its resource
capacity. We utilize workload trace data of different node
from the dataset [27] and randomly select 20 nodes and 1000
timestamps to initialize the remaining resources of different
nodes. Through the test in Kubernetes, the time of inplace
vertical scaling is less than 0.01s, so we set the value of τun
in (6) to 0.01.

To simulate the scaling tasks of different functions at
different times, we select 10 different types of functions
from [28], [29], each with distinct resource requirements. We
randomly choose varying degrees of workload variations
from the Azure Function Dataset [30] to simulate the scal-
ing process of these 10 functions at different timestamps.
Throughout this process, we record the scaling time and
resource cost incurred by the scaling tasks of different
functions at various timestamps.

We select the following baselines for comparison with
ComboFunc:

• Knative [31]: The default scheduling strategy of the
serverless platform Knative. It is based on kube-
scheduler for scheduling and utilizes homogeneous
containers without inplace pod vertical scaling.

• ComboFunc w/o Inplace: The strategy of Combo-
Func utilizes heterogeneous containers without in-
place pod vertical scaling.

• First Fit [32]: A scheduling algorithm that determines
the placement of containers by selecting the first
available node that can accommodate the resource
requirements of the container, without inplace pod
vertical scaling.

(b) InPlaceDeployment CRD.

Fig. 10: Custom Resource Definition (CRD) for InPlaceDe-
ployment and ComboFunc.
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Fig. 11: Workflow diagram of the InPlaceDeployment Con-
troller.

5.3 Container Scheduler and Load Balancer

In the decision-making process of ComboFunc, the place-
ment of each container is not only considered but also
accomplished through a highly sophisticated Container
Scheduler. This scheduler has been meticulously designed
to accurately determine the optimal position of each con-
tainer within the cluster, thereby ensuring optimal resource
utilization. To achieve this objective, our unique scheduling
algorithm has been seamlessly integrated into the Kuber-
netes Scheduler. During the actual scheduling process, we
strictly adhere to the container placement plan provided
by the Resource Scaler, guaranteeing that each container is
positioned in its most suitable location.

During the system’s operation, user requests are in-
cessantly sent to the API Gateway of the FaaS platform.
This API Gateway serves as the central entry point of
the system, responsible for receiving and processing all
incoming requests. Upon receiving a request, the API Gate-
way promptly forwards it to the Load Balancer. The Load
Balancer, being more than just a simple traffic distributor,
intelligently assigns requests to the respective pods based
on specific traffic weights. This implies that the volume of
requests received by each pod dynamically adjusts accord-
ing to their processing capabilities and current workload.

Furthermore, each pod is configured with strict con-
tainer concurrency limits. These concurrency limits ensure
that each container can handle only a predefined number
of requests at any given time. This resource management
strategy effectively prevents any individual container from
experiencing performance degradation due to overload. The
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Load Balancer also takes on the responsibility of real-time
monitoring of the current concurrency level of each con-
tainer. Once a container reaches its concurrency limit, the
Load Balancer promptly halts the allocation of new requests
to that container. This intelligent scheduling mechanism en-
sures the efficient operation of the entire system, preventing
resource waste and system overload.

6 EXPERIMENTAL EVALUATION

In this section, we demonstrate the advantages of Combo-
Func through a series of experiments. We aim to answer the
following research questions (RQs):

• RQ1: Can ComboFunc offer better resource scaling
agility compared to other strategies?

• RQ2: Can ComboFunc reduce function resource cost
compared to other strategies?

• RQ3: Can ComboFunc improve cluster resource uti-
lization compared to other strategies?

• RQ4: How does the adjustment of the trade-off
parameter in ComboFunc influence the balance be-
tween resource scaling agility and resource cost?

• RQ5: How does the number of nodes in a cluster
affect ComboFunc’s performance in terms of function
resource scaling speed and resource cost?

• RQ6: What is the impact of individual container
creation speed on the resource scaling speed and
resource cost of ComboFunc and other strategies?

• RQ7: What is the decision-making cost of the Com-
boFunc algorithm?

6.1 Experimental Setup

TABLE 2: Testbed configurations.

Name Configuration

CPU Dual AMD EPYC 7R12 Processor
with 96 cores 192 threads (@2.5GHz)

Memory 256GB DDR4 2133 MHz with 16 channels
Disk Intel P4501 4TB

Network External network bandwidth over 1Gbps
OS Ubuntu 20.04 LTS with kernel 5.15.0-94-generic
VM QEMU emulator version 4.2.1

Kubernetes v1.27.1 with feature gate InPlacePodVerticalScaling
Containerd v1.6.18

Knative knative-serving v1.7

In this section, we introduce the detailed setup of the
ComboFunc experiments.

• Testbed: To evaluate our heterogeneous container
resource combination and scheduling framework, we
prepare a real Kubernetes cluster consisting of 16
nodes, each configured with 8 CPU cores and 16GB
of memory. The device parameters of the experimen-
tal platform are shown in Table 2.

• Worker functions: To simulate a real FaaS produc-
tion environment, we deploy a series of functions
on the cluster and generate diverse workloads to in-
voke these functions. During the experiment, due to
the influence of different function workloads, these
functions need to perform function scaling tasks on
different nodes. In terms of functions for evaluation,

we choose four different types of functions from [44],
[45]: File Processing (FP), Video Processing (VID),
Web Service (WEB), and Machine Learning (ML).
Each function has unique resource requirements and
can be configured with different levels of concur-
rency.

• Workload traces: We select workload traces from
the Azure Function Invocation Dataset [46], which
exhibits certain bursty workload changes, to test the
performance of ComboFunc in terms of resource scal-
ing. We implement a multi-threaded workload gen-
erator tailored for the FaaS platform to simulate the
real workload of these four functions. In actual ex-
periments, to ensure that each function has sufficient
resources under different workloads, we standardize
and scale the function workload in advance to match
the available resources of the local testbed, and any
additional requests exceeding the cluster’s resource
capacity are discarded according to the principle of
fairness.

During the experiment, we observe and record the re-
source scaling time and cost of the four functions at various
timestamps. We select the following baselines for compari-
son with ComboFunc:

• Knative [47]: The default scheduling strategy of the
serverless platform Knative. It is based on a kube-
scheduler for scheduling and utilizes homogeneous
containers without in-place pod vertical scaling.

• Autopilot [13]: Google’s internal cluster scheduling
method for the Borg [40]. It supports in-place vertical
scaling of container resources but does not utilize
heterogeneous containers.

• ComboFunc w/o In-place: The strategy of Combo-
Func utilizes heterogeneous containers without in-
place pod vertical scaling.

• Random Fit [48]: A scheduling algorithm that de-
termines the placement of containers by selecting
the first available node that can accommodate the
resource requirements of the container, without in-
place pod vertical scaling and heterogeneous con-
tainers.

• Trimaran [49]: An advanced scheduling strategy en-
abling the Kubernetes scheduler to minimize ma-
chine costs by understanding the gap between re-
source allocation and actual resource utilization. It
balances the actual average workload and mitigates
the risk associated with sudden workload fluctua-
tions.

The comparison between different methods can be seen in
Table 3.

6.2 Improvement of Scaling Agility (RQ1)
We evaluate the performance improvement of ComboFunc
in terms of function resource scaling speed. As shown in
Figure 12, we analyze the average scaling time for the four
function containers deployed in the cluster. Compared to
other strategies, ComboFunc demonstrated significant ad-
vantages, exhibiting the lowest average scaling time. Specif-
ically, compared to Random Fit, ComboFunc speeds up the
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TABLE 3: Comparison of methods.

Method In-place VPA Heterogeneous Spec Scheduling Algorithm

Knative No No Default kube-scheduler
Autopilot Yes No Default kube-scheduler
ComboFunc w/o In-place No Yes ComboFunc
ComboFunc Yes Yes ComboFunc
Random Fit No No Random select a node that fits
Trimaran No No LoadVariationRiskBalancing

FP VID WEB ML
Function Name

0

1

2

3

4

5

A
vg

S
ca

lin
g

T
im

e
(s

)

ComboFunc

ComboFunc w/o Inplace

Autopilot

Knative

Random Fit

Trimaran

Fig. 12: Average function
scaling time with different
functions.

FP VID WEB ML
Function Name

0

1000

2000

3000

4000

5000

6000

7000

A
vg

R
es

ou
rc

e
C

os
t

ComboFunc

ComboFunc w/o Inplace

Autopilot

Knative

Random Fit

Trimaran

Fig. 13: Average function re-
source cost with different
functions.

four functions by 3.01×, 1.91×, 2.44×, and 2.77×, respec-
tively. Compared to Knative, the speedups are 2.85×, 1.80×,
2.30×, and 2.61×, respectively. Compared to Autopilot, the
speedups are 2.05×, 1.67×, 1.89×, and 2.16×, respectively.
Compared to Trimaran, the speedups are 2.35×, 1.73×,
2.24×, and 2.42×, respectively.

Among all these strategies, Random Fit exhibits the low-
est function resource scaling speed. This is because it only
considers whether available resources on different nodes
meet the requirements, without taking into account the
differences in container creation speed on different nodes.
Therefore, randomly selected nodes may suffer from perfor-
mance interference during the container creation process,
leading to performance bottlenecks. This further under-
scores the motivation behind ComboFunc, which is to make
targeted scheduling optimizations based on the actual ca-
pacity of container creation on different nodes. In addition,
ComboFunc significantly improves the resource elasticity
scaling speed compared to strategies that do not enable
in-place pod vertical scaling, increasing by 40.1%, 19.5%,
24.0%, and 36.6% for these four functions, respectively. This
indicates that leveraging the latest features of Kubernetes,
which allow dynamic adjustments of container resource
allocation without the need for container recreation, is a
crucial means to enhance resource elasticity and agility.

Figure 14 shows the changes over time in function
concurrency, number of replicas, and scaling time, the key
to understanding how ComboFunc adapts dynamically to
drastic workload fluctuations. It shows significant fluctua-
tions in both concurrency and the number of replicas, with
the ratio of replicas to concurrency varying between 1:3 and
1:6. This fluctuation demonstrates ComboFunc’s flexibility
in resource configuration through various configurations of
container concurrency and combinations of differently sized
heterogeneous containers. Moreover, the trend in scaling
time is smoother compared to concurrency and replicas,
indicating that ComboFunc’s strategy of optimizing parallel
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Fig. 14: Temporal dynamics of function concurrency, repli-
cas, and scaling time.

container creation and in-place pod vertical scaling effec-
tively reduces bursty spikes in scaling time, thereby enhanc-
ing system stability and response speed. However, there are
moments when scaling time spikes, likely due to cluster
resource limits not fully utilizing ComboFunc’s advantages,
leading to bottlenecks in container creation. This shows that
ComboFunc’s strategy is not infallible. When faced with
limits, ComboFunc’s ability may be challenged.

6.3 Reduction of Resource Cost (RQ2)

We evaluate the resource cost reduction of ComboFunc,
encompassing both CPU and memory costs. As shown in
Figure 13, ComboFunc shows the lowest average resource
cost among different functions, indicating its advantage in
cost optimization. Specifically, compared to Random Fit,
ComboFunc reduces the average resource overhead for
these four functions by 38.5%, 31.2%, 41.9%, and 42.6%,
respectively. Compared to Knative, the reductions are 35.6%,
29.7%, 39.6%, and 27.5%, respectively. Compared to Au-
topilot, the reductions are 17.8%, 14.8%, 26.7%, and 17.1%,
respectively.

Additionally, we observe that the extent of resource
savings varies among different functions. This is because
different functions have distinct performance requirements
and characteristics, leading to varying demands for re-
source scaling speed and resource cost. We find that Com-
boFunc’s effectiveness is more pronounced when dealing
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with resource-intensive function containers. This is because
improving scaling speed is a pain point for such function
applications, and our heterogeneous resource combination
mechanism effectively enhances scaling agility while reduc-
ing resource fragmentation in these cases.

6.4 Improvement of Resource Utilization (RQ3)

We assess the improvement in cluster node resource utiliza-
tion achieved by ComboFunc. At different times, as different
functions undergo resource scaling, the resource utilization
of various nodes in the cluster also changes. We compile
probability distribution CDF graphs for CPU and memory
utilization of different nodes at different timestamps, as
shown in Figure 15 and Figure 16. The closer the quantile
curve in the graph is to the lower right corner, the higher
the proportion of nodes with high resource utilization. It can
be observed that, compared to other strategies, ComboFunc
exhibits higher overall resource utilization. This is not only
because ComboFunc optimizes scheduling by leveraging
the combination of heterogeneous container resources to
better utilize resource fragments within the cluster but
also because ComboFunc’s resource scaling is more ag-
ile, thereby enhancing the efficiency of resource utilization
across the cluster.

6.5 Impact of Different Trade-off Parameters (RQ4)

Due to the inherent trade-off between high resource scaling
agility and low resource costs, we incorporate a tradeoff
parameter into our model. To investigate the impact of
selecting different trade-off parameters, we conduct exper-
iments by varying the trade-off parameter. The results are
illustrated in Figure 17 and Figure 18. Choosing different
trade-off parameters implies different preferences for scal-
ing agility and resource cost. A larger parameter value
corresponds to lower resource elasticity agility but lower
resource costs. Conversely, selecting a smaller parameter
value enhances resource elasticity agility but results in
higher resource costs. Therefore, for the diverse require-
ments of different functions, we can adjust the specific trade-
off parameter to tailor the solution to meet various needs.

6.6 Impact of Different Number of Nodes (RQ5)

To explore the impact of different cluster sizes on Combo-
Func’s performance, we conduct experiments with clusters
configured with varying numbers of nodes, ranging from
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small to large. As evident from Figure 19 and Figure 20, re-
gardless of the cluster’s size, ComboFunc outperforms other
strategies. An increase in the number of nodes implies that
more nodes can participate in container creation, thus accel-
erating the scaling speed of function resources. However,
for function resource cost, more nodes also mean higher
resource cost overhead. ComboFunc achieves more eco-
nomical and efficient function resource utilization through
the combination and optimal placement of heterogeneous
containers, mitigating the impact of increased resource costs
associated with larger clusters.

6.7 Impact of Different Pod Creation Time (RQ6)

From the earlier analysis, we can see that the use of het-
erogeneous container resource combinations for resource
scaling, combined with the feature of in-place pod vertical
scaling, has contributed to ComboFunc’s excellent resource
scaling agility. Our experiments are conducted on the Kna-
tive and Kubernetes platforms, where individual container
creation speeds were relatively slow, taking approximately
seconds to start. However, the industry is currently develop-
ing a range of more lightweight container runtimes that can
significantly reduce container creation overhead [16], [17],
[50].

To investigate the resource elasticity performance of
different strategies under varying speeds of individual con-
tainer creation, we measure the average scaling time of con-
tainers during actual workload using a simulation platform.
As shown in Figure 21, even though the container creation
speed itself increases, the performance improvement of
ComboFunc becomes smaller. However, ComboFunc still
delivers objective resource scaling speed improvements.

Figure 22 presents the actual resource costs under dif-
ferent individual container creation overheads and various
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strategies. It can be observed that the speed of creating
individual containers has a relatively minor impact on the
average resource costs. This is likely because the resource
costs of containers are primarily determined by the resource
composition strategy, with the impact of varying container
creation speeds contributing less to overall resource costs.

6.8 Overhead of Solution (RQ7)

We conduct a thorough evaluation of the computational
overhead of the ComboFunc. As demonstrated in Sec-
tion 4.1, the computational complexity of Algorithm 1 is
clearly defined. In the worst case, this complexity increases
linearly with the growth of the cluster size. To show the
efficiency of our algorithm, we measure the decision-making
time of the ComboFunc Resource Scaler. As depicted in
Figure 23, with a fixed cluster size of 16 nodes, we control
the selection of varying numbers of function Pod resource
specifications. Theoretically, as the number of selectable
specifications for containers doubles (e.g., 4, 8, 16), the
decision-making time should increase proportionally. How-
ever, as observed in the figure, the actual average decision-
making time does not fully reach the theoretical doubling.
This discrepancy arises because the worst-case scenario does
not always occur in real systems. In our experiments, the
decision-making time of ComboFunc is generally within
tens of milliseconds, rarely exceeding 100 milliseconds.

Additionally, we analyze the performance of the Com-
boFunc algorithm across different cluster sizes. As shown
in Figure 24, even in large-scale clusters, the growth in
decision-making time remains within the expected linear
range, without excessive increases. These results indicate
that our algorithm scales effectively to larger clusters with-
out imposing significant computational burdens. In most

situations, ComboFunc efficiently optimizes the resource
allocation process, and compared to the second-level cycles
typically associated with container resource elasticity deci-
sions, such decision-making times are negligible.

TABLE 4: Average decision-making time of different base-
lines.

Method Latency (ms)

ComboFunc 79
Knative 45

Random Fit 35
Autopilot 99
Trimaran 60

To compare the decision time costs of other baseline
algorithms, we record the average time costs during the
experiment in Table 4. We find that ComboFunc’s average
decision time is 79 ms, only lower than Autopilot’s 99 ms.
ComboFunc takes longer to decide because it handles more
complex problems than other methods. It not only considers
the combination and placement of different containers but
also decides whether to perform in-place vertical scaling for
each container. This strategy, although it increases decision
time, greatly improves resource efficiency. For the cloud
platform, this cost is reasonable and brings significant ben-
efits.

7 RELATED WORK

Container scheduling in serverless. Container deployment
in productions must satisfy a multitude of constraints, such
as hardware requirements, fault tolerance, and resource
competition [48], [51]. Current cloud resource management
research primarily focuses on optimizing service placement,
considering a set of containers with specific resource needs
to be positioned across various nodes in a cluster [25],
[26], [52], aiming to optimize resource utilization efficiency,
enhance performance and reduce cost [53]. Particularly,
some studies take into account factors like data transmission
affinity [23], [24], disk IO [54], container image sharing [25],
[26], and performance interference [27], to optimize the
operational efficiency of serverless tasks, catering to their
specific characteristics and requirements. Traditional con-
tainer scheduling research mainly addresses bin packing or
integer linear programming problems [25], [26], [55], [56].
However, ComboFunc introduces a new problem, which is
to determine the combination and placement of heteroge-
neous container resources simultaneously, and it designs a
heuristic solution based on a greedy algorithm. The mech-
anism is simple and efficient, suitable for rapid decision-
making in real-world system environments. Some studies
have achieved significant results by using deep reinforce-
ment learning to optimize traditional complex scheduling
issues [48], [57], [58], [59]. Future work could consider
adopting deep learning approaches to solve these problems.

Horizontal and vertical scaling. Recent studies have also
focused on elastic scaling in both horizontal and vertical
dimensions. Some works have designed elastic strategies
for traditional VM scenarios in both these dimensions [60].
In the context of container clouds, research has been con-
ducted on how to optimize application performance by
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combining horizontal scaling (increasing or decreasing the
number of application instances) and vertical scaling (ad-
justing the computational resources allocated to each ap-
plication instance) [13], [32], [33], [61], [62]. AWARE [32]
is dedicated to solving the problem of automatic workload
scaling in cloud systems. This framework considers multi-
dimensional scaling (horizontal and vertical) and uses a
reinforcement learning-based agent to dynamically set re-
source limits and scale workloads. Autopilot [13] achieves
resource allocation by adjusting the number of concurrent
tasks and the CPU/memory limits of individual tasks, real-
izing horizontal and vertical scaling of container platforms.
It also utilizes machine learning algorithms based on histor-
ical data and heuristic algorithms to minimize the slackness
of resource utilization and avoid issues of memory insuffi-
ciency or performance degradation. Golgi [33] reduces the
cost of resource allocation by smartly over-committing func-
tions while meeting their latency requirements. It uses nine
low-level indicators to dynamically capture the runtime
performance of functions, employs the Mondrian Forest
classification model for performance prediction, and imple-
ments a conservative exploration-exploitation strategy for
routing requests. Additionally, it executes vertical scaling
to dynamically adjust the concurrency of over-committed
instances, thereby maximizing request throughput and en-
hancing system robustness against prediction errors.

Additionally, an important research project related to
ComboFunc is Escra [29], which implements dynamic re-
source adjustment through event-based fine-grained re-
source allocation. Unlike ComboFunc, Escra operates pri-
marily at the kernel level, focusing on rapidly responsive
CPU and memory resource allocation. In contrast, Combo-
Func concentrates on serverless computing scenarios, em-
phasizing the importance of resource elasticity and schedul-
ing strategies. ComboFunc’s approach includes not only
dynamic adjustment of resource scale but also optimization
of container placement and flexibility in resource allocation,
aimed at enhancing resource utilization and response speed,
thereby better adapting to the rapid changes and resource
demands in serverless environments.

However, these systems do not fully consider the hetero-
geneous configurations of function services, meaning that a
service can correspond to multiple sets of functions with
different specifications. This approach allows for a balance
between elasticity speed and resource utilization. Similarly,
these systems do not specifically account for the limitations
in the expansion capabilities of different nodes, such as
variations in expansion speed among nodes, which may
result in bottlenecks during container creation. Furthermore,
neither AWARE [32] nor Golgi [33] address the in-place
pod vertical scaling feature of Kubernetes, a novel con-
cept that requires targeted optimization. These limitations
present opportunities for improvement within ComboFunc.
The projects most similar to ComboFunc, are Autopilot [13]
and Owl [18]. Autopilot implements horizontal and verti-
cal scaling of container platforms for resource allocation,
while Owl primarily focuses on optimizing container over-
commitment while providing performance guarantees. In
contrast, ComboFunc adopts heterogeneous container re-
source scheduling and optimizes the scalability of FaaS
providers, representing an orthogonal improvement.

Accelerate function cold start. Many studies are ded-
icated to reducing the overhead of function cold starts,
focusing on minimizing the additional burden during these
starts [16], [17], [50], [63], [64], [65], [66], [67], [68], [69].
Firecracker [16] is a lightweight virtualization runtime de-
veloped by AWS for AWS Lambda functions, providing
container-like efficiency with secure isolation. RunD [17]
is a secure sandbox environment that simplifies container
runtimes for faster scaling. Additionally, SAND [70] reduces
data localization and function startup costs by sharing
container runtimes. SOCK [71] minimizes function startup
delay by caching preloaded Python containers. Pagurus [64]
observes that user-operated containers often share many
packages. By utilizing similar hot containers from other
operations, lengthy cold starts can be eliminated. Other
studies design specific container keep-alive strategies based
on function request analysis to prevent cold starts [9], [37],
[46], [72], [73], [74]. Some focus on hybrid methods, com-
bining instance reservation and container elasticity for more
economical resource allocation [75]. These works comple-
ment each other to enhance the efficiency of FaaS providers.

8 LIMITATION AND FUTURE WORK

In this section, we analyze the limitations of ComboFunc
and look forward to future work.

First, when scheduling containers, ComboFunc currently
considers only the CPU and memory specifications of the
containers. However, besides these two main factors, other
factors can also affect resource scheduling. For example, a
container’s network bandwidth is critical, especially when
dealing with large data transfers. Insufficient bandwidth can
lead to increased packet delays, thus affecting the applica-
tion’s performance. Additionally, containers may encounter
CPU cache competition, which can significantly reduce per-
formance. Furthermore, the NUMA topology of memory is
also an important consideration, as different memory access
patterns can lead to variations in performance. Therefore,
to improve resource utilization and optimize performance,
in future work, we need to develop a more comprehensive
resource model that considers these additional factors.

Second, ComboFunc has designed a function resource
combination strategy based on heterogeneous containers.
Customers can choose larger containers with higher con-
currency or smaller containers with lower concurrency.
However, there is a performance variation between con-
tainers of different specifications. To address this challenge,
ComboFunc’s load-balancing strategy strives to balance the
workload among these containers, ensuring similar perfor-
mance among different containers. However, ComboFunc
lacks optimization strategies for specific function Service
Level Objectives (SLOs), which may result in inadequate
service quality in applications with strict performance re-
quirements. In future work, we propose introducing more
refined service quality management mechanisms. Machine
learning algorithms could be used to predict the perfor-
mance of different containers under various workloads,
making resource scheduling more intelligent. This will al-
low ComboFunc not only to balance the workload among
heterogeneous containers but also to optimize the execution
efficiency and service quality for specific functions.
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Lastly, although ComboFunc currently schedules re-
sources based on each container’s requested resources, it
does not consider whether the containers are fully utilizing
all the resources allocated to them. This strategy may seem
sufficient for cloud platforms, as it fulfills their revenue
objectives by allocating node resources. However, from the
perspective of actual resource utilization efficiency, this
method may lead to resource wastage, especially when
containers do not fully utilize their allocated resources. For
example, a container might consume a significant amount
of CPU and memory resources due to over-provisioning,
while these resources remain idle most of the time. In
future work, we explore how to implement a dynamic over-
commitment mechanism, which allows the system to over-
allocate physical resources while ensuring service quality,
thus maximizing resource utilization efficiency.

9 CONCLUSION

This paper proposes ComboFunc, a system for scaling func-
tion resources for serverless platforms. Leveraging Kuber-
netes’ in-place vertical scaling, ComboFunc employs het-
erogeneous containers and parallel container creation across
different nodes for efficient resource scaling and improved
utilization. A cost-based greedy algorithm addresses the
optimization problem of resource combination and place-
ment. Experiments on the Knative platform demonstrate
that ComboFunc surpasses existing methods, increasing
average resource scaling speed by up to 3.01 × and de-
creasing function resource cost by up to 42.6%, significantly
enhancing cluster resource utilization.
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