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As a recent innovation, network functions virtualization (NFV), with its core concept of replacing hardware
middleboxes with software network functions (NFs) implemented in commodity servers, promises cost savings
and flexibility benefits. However, transitioning NFs from special-purpose hardware to commodity servers
has turned out to be more challenging than expected, as it inevitably incurs performance penalties due to
bottlenecks in both software and hardware. To achieve performance comparable to hardware middleboxes,
there is a strong demand for a speedup in NF processing, which plays a crucial role in the success of NFV. In
this article, we study the performance challenges that exist in general-purpose servers and simultaneously
summarize the typical performance bottlenecks in NFV. Through reviewing the progress in the field of NFV
acceleration, we present a new taxonomy of the state-of-the-art efforts according to various acceleration
approaches. We discuss the surveyed works and identify the respective advantages and disadvantages in each
category. We then discuss the products, solutions and projects emerged in industry. We also present a gap
analysis to improve current solutions and highlight promising research trends that can be explored in the
future.
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1 INTRODUCTION
Modern networks are becoming more sophisticated with the ubiquitous deployment of hardware-
based network functions (NFs), also known as middleboxes [128]. These middleboxes play a key role
in advanced traffic processing and provide a variety of network functionalities, from firewalls and
intrusion detection systems for improving security to proxies and WAN optimizers for enhancing
performance. Traditionally, middleboxes are usually tightly coupled with dedicated hardware.
When launching a new service, more pieces of hardware are needed, which leads to a long service
deployment cycle. With more capital investment and shorter hardware lifecycles, network operators
face a severe situation of substantially lower profits, since launching new services is difficult and
time-consuming.
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Network functions virtualization (NFV) is a novel paradigm for offering flexible network services,
by leveraging virtualization technologies to decouple NFs from hardware middleboxes and make
them execute in virtual machines (VMs), containers, or even natively. By this means, NFV abstracts
general-purpose hardware (e.g., x86 servers) and brings considerable benefits: 1) reduced costs
in purchasing regular commercial off-the-shelf (COTS) hardware instead of dedicated network
equipment; 2) shortened time-to-market to deploy new network services and increased profits from
these new services; 3) greater flexibility to scale up or down software-based NFs in an on-demand
basis and migrate NFs to various locations whenever necessary; and 4) higher efficiencies in power,
cooling and finding space for launching new network services. Based on a report by Global Market
Insights company, the NFV market share will exceed 70 billion US dollars by 2024 [42].
Although NFV introduces substantial benefits, it is still challenging to put the deployment

of software-based NFs into practice. One of the major obstacles is the difficulty in achieving
high performance comparable to hardware-based middleboxes when running software NFs in a
virtualized environment. For example, the processing delay of fully virtualized gateways results
in a maximum of 132 𝜇s, which is almost 8 times larger than the processing delay of decomposed
gateways (i.e., 15 𝜇s) [13]. In fact, it is vital for many NFV-based applications to achieve the desired
performance. For instance, Voice over Internet Protocol services are particularly delay-sensitive and
often require less than 150 milliseconds (ms) of end-to-end latency with low latency variance (i.e.,
jitter) [24]. Even a transient lack of connection can cause service disruption and thus violate the
service level agreements (SLAs). For throughput-sensitive applications, Internet Protocol version 4
(IPv4) and Internet Protocol version 6 (IPv6) forwarding need to support 10 million of packets per
second (Mpps) [1] for providing high performance and scalability. In addition, a high-performance
IP security (IPsec) stack requires to sustain more than 190 gigabits per second (Gbps) of encrypted
traffic on a single server [63]. Therefore, NFV solutions need to be carefully designed to satisfy the
strict performance requirements of different applications.

As technology advances, modern commodity servers are generally equipped with multiple CPU
cores, thus allowing workloads running on processors in parallel. Meanwhile, the fast development
of high-speed network enables network interface cards (NICs) to evolve from 10 Gbps to 100
Gbps [72]. However, these advances do not guarantee high performance for NFV applications.
The fundamental reason behind this is that the operating system’s (OS) networking stack is not
designed for fast middlebox processing but for general-purpose communications. Indeed, achieving
high-performance packet processing from commodity servers is challenging and has been a hot
research topic in both academia and industry (e.g., ETSI works [44–48]) for several years. In many
cases, it is hardly possible to achieve the desired performance due to the following obstacles that
are inherent in both software and hardware, which cumulatively slow down the packet processing
in commodity servers and hinder high performance in NFV:
1) After the speed of NICs transiting from 10 Gbps to 100 Gbps, the processing time of each

packet on the network links decreases from 67 nanoseconds (ns) to only 6.7 ns for the minimum
64B packet, in order to sustain line rate [90]. This imposes great pressure on the NFV system
architectures, which will inevitably get worse in the case of a 100-gigabit interface [71].

2) General-purpose network stacks, such as the Linux network stack, lack optimized kernel-user
space and fast input/output (I/O) data path for software packet processing. In fact, modern OSes
can result in 10 to 20 times the speed slower than a 10-gigabit interface to process a packet
for an application [20]. High cost induced from numerous user-kernel context switches and
system call interruptions turn out to be the major performance bottlenecks for yielding high
performance [74, 90].

3) Popular software switches, such as Open vSwitch [36, 112], which are used by (i) hypervisors,
such as Kernel-based VM (KVM) [83], to interconnect VMs and/or (ii) bare metal deployments
to interconnect containers (e.g., Docker), are incapable of providing desired performance. The
reasons would be the inefficiencies of the software switch, the bottlenecks exist in virtualized
network device drivers (e.g., virtio [123]), and inter-core communications for traffic steering.

4) Some existing NFV frameworks (see Section 4.4) do not fully exploit low-level hardware features,
such as cache consistency in a 3-hierarchy style and memory concurrency, in order to improve
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the cache hit and decrease the memory-access overhead. Besides, the capabilities of modern NICs
are also not fully utilized, since they can not only do simple hashing of packets (e.g., Receive
Side Scaling [27]) but also provide both packet classification and dispatching capabilities (e.g.,
Flow Director [58]). Fortunately, these problems are recently solved by Metron [72].
In the context of NFV, traffic usually needs to go through a sequence of NFs in a specific order,

which is also known as service function chain (SFC), or service chaining [66]. Accordingly, it needs
multiple VMs (or containers) to create a single network service, and those VMs could reside in the
same or different servers. Traffic among VMs has to flow back and forth among different guest OSes
within the same or different hosts (servers). The latter case brings a greater challenge for sustaining
high performance, compared to service chains within a single server where packet processing
incurs lower delay and consumes fewer CPU resources than going through the NICs [106].
To address the performance issues described above, a growing number of research efforts

have been paid to improve NFV performance. Specifically, NFs are possible to achieve prominent
performance improvement in an NFV platform by some forms of acceleration. Through a careful
review of the progress in this field, we present a new taxonomy regarding all the surveyed works
based on various acceleration approaches. We further discuss these works in detail and reveal their
respective advantages and disadvantages in each category.
In this article, both acceleration of NFV and packet delivery for specific NFs (e.g., software

switches and routers) are considered as the survey topic. Although Cerović et al. [20] have already
written a related survey, many NFV-specific acceleration works are missing in their work since
their major focus is on packet processing. In contrast, we focus on NFV acceleration and our work
provides comprehensive reviews on the typical performance challenges in the context of NFV.
We present a new taxonomy regarding a wide spectrum of NFV acceleration categories, while
[20] just classifies the approaches into hardware- or software-based implementations and does
not discuss some important aspects (e.g., NF offloading on smart NICs). We also discuss industrial
products and solutions that are lacking in [20], which indicate the feasibility of NFV acceleration
into practical applications. Other works just focus on only one aspect, such as I/O frameworks [38]
or NFV datapath [86]. Besides, we present a gap analysis in order to improve the current solutions
and introduce some promising research trends that can be explored in the future.

The roadmap of this article is organized as follows. In Section 2, we introduce the performance
metrics of interest, take a close look into the typical performance bottlenecks in NFV and analyze
the associated performance challenges. Next, we introduce some common frameworks, software
switches/routers, and hardware accelerators used in the field of NFV acceleration in Section 3.
In Section 4, we provide a taxonomy regarding the state-of-the-art approaches in this field. We
survey these works in each category from Section 4.1 to Section 4.4, respectively. Then we briefly
give a discussion and comparison of the surveyed works in Section 4.5. In Section 5, we discuss
the emerging products, solutions and popular projects in industry. We present a gap analysis and
highlight promising future trends in Section 6. Finally, Section 7 summarizes and concludes this
article.

2 PERFORMANCE METRICS, BOTTLENECKS AND CHALLENGES IN NFV
In this section, we introduce the performance metrics of interest, and study and summarize the
bottlenecks and challenges that affect the performance of NFV.

2.1 Performance Metrics of Interest
In an NFV platform, network performance is the analysis and review of collective statistics and
metrics, in order to reflect the quality of network services. Broadly, there are multiple means
to measure the performance in the context of NFV, as each service chain has different SLAs.
Among the available options, the following performance metrics of interest are often considered as
fundamental.

• Raw interface throughput describes the total amount of traffic that can be transferred over
an I/O device such as a NIC over time, which is usually measured in megabits or gigabits per
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Fig. 1. Typical NFV performance bottlenecks.

second (i.e., Mbit/s or Gbit/s). This metric is used to weigh the processing speed of a physical
network interface and is limited by the maximum interface bandwidth.

• Packet throughput describes how fast an I/O system can process packets, which is usually
measured in millions of packets per second (i.e., Mpps). This metric is used to weigh the
packet forwarding speed of a NIC and has much to do with the packet size. Generally, the
smaller the packet size is, the greater the challenge is imposed on packet throughput.

• End-to-end latency is usually measured from a source that generates the traffic and to a
sink that receives the traffic. The end-to-end latency can be further classified into four types
of delays, i.e., processing delay to handle packets on a node, queuing delay to buffer packets
before sending them out, transmission delay to push packets onto a link, and propagation
delay to deliver packets through the link.

Even though both raw interface throughput and packet throughput can describe the throughput,
the former reflects the data transmission speed through an interface, while the latter reflects how
many packets of the same size can be transferred per second. Note that some surveyed works need
to measure the throughput under different packet sizes, in this case, packet throughput is more
intuitive for evaluation. Besides, other metrics such as packet loss rate and the latency variance,
also known as jitter, can also be used to measure the network performance. Since most of the
surveyed works evaluate their systems via throughput or latency, we mainly discuss the three listed
metrics above in this paper.

2.2 Typical Performance Bottlenecks
NFV advocates to use software-basedNFs implemented in commodity servers. Multiple NFs are often
consolidated into a single server, where each NF runs on a VM basis in a virtualized environment.
As such, a typical NFV platform is generally composed of some fundamental components such as
host OS, virtual switches, virtual NICs and NFs. An NFV platform can run NFs in VMs or containers,
or even run them as native processes. There are two typical NFV platforms (i.e., with/without
hypervisors), both of which are plotted in Figure 1. Here we first focus on the performance
bottlenecks in a VM-based NFV platform with a hypervisor, where the general location of each
kind of performance bottleneck is shown in Figure 1(a). These bottlenecks can be categorized into
six kinds, from the server hardware bottleneck to NF bottleneck. Note that some bottlenecks are
not unique to virtualized environments, however, these bottlenecks would accumulate as NFV is
adopted. We now give a closer examination on how these bottlenecks occur from a systematic view.
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I. Server Hardware Bottleneck. As a whole, the server hardware characteristics greatly affect
the performance of NFs running on it. Typical server parameters can be the number of cores,
CPU frequency, cache size, memory size and latency, bandwidth of peripheral buses, NIC
speed, instruction set, etc. An NFV platform usually requires to be equipped with powerful
servers (e.g., Intel Xeon E5 v4 series processors with up to 22 cores, 44 threads, 55 MB LLC, 40
GbE NIC, and Intel Xeon E7 v4 series processors with up to 24 cores, 48 threads, 60 MB LLC,
40 GbE NIC) to eliminate server hardware bottleneck.

II. Virtual Switch Bottleneck. The virtual switch bottleneck is obvious since the virtual switch
on the hypervisor can be viewed as an intermediate stop, through which all packets must go,
no matter packets travel into and out of a host, or packets flow between VMs. The capability
of the virtual switch plays a crucial role in a high-performance NFV platform.

III. Communication Bottleneck. The communication bottleneck between the guest and host
OS arises from double memory page translation and interrupt remapping, etc., between virtual
hardware resources and physical hardware resources. The virtual CPUs in the guest OS run as
QEMU [15] threads which are treated as normal processes in the host OS. These threads can
be scheduled in any physical core in the host which increases cache misses and hampers the
performance. This results in that some unnecessary OS features may also introduce high cost
that limits the performance. For instance, the task scheduling mechanism of the OS is good
for a fair CPU utilization among the processes; however, for NF processing that requires high
performance, it fails and may lead to high context switches due to the fair CPU shares.

IV. I/O Device Bottleneck. The I/O device bottleneck comes with the virtual NIC drivers. It
incurs overheads due to the high overhead of delivering packets between guest VMs and I/O
device driver, since the driver cannot directly access the memory where a packet lies in the
guest VM. Effective memory sharing mechanism should be provided by the driver for accessing
the packet. For example, virtio [123] is a major virtualization standard for network device
drivers and has been adopted by many NFV solutions; however, it is slow since the hypervisor
has to emulate actual physical NICs, and this emulation is both complicated and inefficient.

V. Guest OS Bottleneck. The guest OS bottleneck is similar to the bottleneck that exists in a
non-virtualized environment. The packet processing in a traditional networking stack often
incurs heavy kernel-user space context switches. Besides, the costly system call interruption
for awakening the virtual CPU to handle the arrival packets further penalizes the performance.

VI. NF Bottleneck. The NF bottleneck occurs due to inefficient software design. NF design con-
cerns whether all capabilities offered by the server hardware can be leveraged. Software features
such as pipelining, multi-threading and deadlock avoidance should be carefully considered in
the design of a new NF. With regard to exploiting the hardware architecture, deterministic
allocation of CPUs can improve the performance of some NFs, since threads in CPUs may
communicate with each other and benefit from sharing the same cache (improved cache hit
ratio) when they need to exchange information. Furthermore, NFs can get faster access to the
memory that is close to the CPU in which the thread is running than the memory connected
to remote CPUs. For those NFs that need high throughput performance and frequent memory
access, these software features need to be carefully integrated into the NF design.

As compared with the heavy-weight VM-based NFV platforms, container-based NFV platforms
(e.g., Docker) can implement NFs as standard user-space processes inside lightweight container
instances, which can be quickly started while incurring little overhead. In this way, more NFs
or application instances can run in containers with fewer resource consumption, lower system
overhead and higher performance as compared with VMs. However, container-based NFV platforms
also have some performance bottlenecks, such as the server hardware bottleneck, the communica-
tion bottleneck, the NF bottleneck, etc. As plotted in Figure 1(b), since there is no hypervisor in
container-based NFV platforms, all the container instances share the same host OS along with its
hardware resources. Thus, the performance isolation in containers is not as strict as hypervisor-
based platforms with fully virtualized hardware resources. In other words, containers are more
fragile when facing Kernel attacks. For instance, an attacker can use some non-namespace resources
in Docker containers to access the host OS. In this case, the container under attack may occupy
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Fig. 2. The packet throughput and inter-packet arrival time under different packet sizes and interface
bandwidths.

the entire host’s resources, which will severely affect the operation of other containers and their
running NFs. Performance isolation in container-based environments can also be broken by the
large computation overhead related to the network stack [75]. As a matter of fact, containers with
high traffic rates can cause the performance of co-located computing-driven containers to suffer an
almost 6x slowdown. Besides, how to split microservices in container-based NFV platforms and
how to efficiently communicate with other microservices will both affect the performance.

Due to numerous layers of bottlenecks in both software and hardware accumulated to the NFV
platform, current NF deployments are just in small test scale, while large-scale NF deployments
are severely limited. Though many high-performance software frameworks have been employed
to address some performance issues via bypassing networking stacks, the accelerated guests only
guarantee fast packet processing for specific NFs and the accelerated virtual switch still requires to
copy packets between the hypervisor and the guest’s memory in VM-based NFV platforms. Recent
research finds that the PCI Express (PCIe), which is the interconnection between the host and
device drivers, can also become the performance bottleneck even in combination with optimized
I/O frameworks, since it has side effects on both throughput and latency of network applications
[102]. For a high-performance service chain, there still exist a number of hindrances in the NFV
platform, especially enabling high-speed communication between two guests or between host and
guest. When a service chain is deployed in two or more NFV platforms, achieving this target will
become more challenging.

2.3 Performance Challenges
For an NFV system that is designed for carrier networks, NF deployments often need to provide
throughput with the order of tens of Gbps and latency with the order of tens of µs [108], in order to
meet the strict performance requirements. With the development of NICs, there is a strong demand
for higher packet processing speed. This, however, imposes great challenges on the platform to
reach the theoretical upper bound of forwarding packets. To demonstrate this truth, Figure 2 shows
the packet forwarding rates (throughput) and inter-packet arrival time under different packet sizes
and interface bandwidths. As plotted in the figure, while the packet forwarding rate increases from
14.88 Mpps to 59.52 Mpps, the inter-packet arrival time drops from 67.2 ns to 16.8 ns when the
interface bandwidth increases from 10 Gbps to 40 Gbps for 64B packet. Katsikas et al. [71] even
declare that the per-packet time to process 64B packets at 40 Gbps is only 12.8 ns. To sustain the
maximum packet forwarding rate, shorter inter-packet arrival time means fewer cycles that a CPU
is allowed to process a packet.

Modern multi-core processors are common to adopt a multi-level cache design. Specifically, each
CPU core has its dedicated L1 cache and L2 cache, but the last level cache (LLC) is shared among
the cores of the same CPU socket. This multi-level cache architecture can largely reduce the CPU
cycles for memory access. Note that both LLC and dynamic random access memory (DRAM) have
local access and remote access. Beside, non-uniform memory access (NUMA) architecture is also
common in modern multi-core systems to separate memory for different processors, where the
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Table 1. Latency of memory access on Intel Xeon 5500 processor [87].

Data Source Latency
L1 cache hit 4 cycles
L2 cache hit 12 cycles

LLC hit, unshared line 26-31 cycles
LLC hit, shared line in another core 65 cycles
LLC hit, modified line in another core 75 cycles

Remote LLC 100-300 cycles
Local DRAM 60 ns
Remote DRAM 100 ns

memory access time is proportional to the distance between the memory and the processor. In a
NUMA-based system, accessing a processor’s local memory is much faster than accessing remote
memory (i.e., memory shared among processors or memory local to another processor).

Table 1 summarizes the latency of memory access with different data sources on a NUMA-based
architecture with two Intel Xeon 5500 processors (each with 256 KB L2 cache and 8 MB shared
LLC among 4 cores), which are based on the same microarchitecture as Intel Core i7 processor
[87]. This processor architecture also brings a huge difference in processing packets, especially for
packets with small sizes. For instance, the inter-arrival time of 64B packets is 12.8 ns at 40 Gbps,
which allows a CPU to process the packets in 33 cycles with the main frequency of CPU at 2.6 GHz.
Considering that both receiving or sending a packet and table lookup need memory access, it is
still hard to sustain maximum packet forwarding rate within 33 cycles, only if LLC can hit in every
memory access with a maximum latency of 31 cycles. If LLC misses, packets via remote DRAM
require up to 100 ns. Even though superior processors like Intel Xeon E5 v4 processors allow direct
data transfer to LLC with optimized LLC-to-core communications and Intel Xeon E7 v4 processors
even increase the LLC by 60 MB (up to 2.5 MB per core), it is still challenging to reach theoretical
packet forwarding rate in case that LLC misses.
In the context of NFV, multiple NFs are often running in a single server. However, in fact, few

state-of-the-art packet processing schemes can guarantee that packets are delivered to the right core
straight from the NIC. They either suffer from inefficient inter-core packet transfers among NFs or
unbalanced workload among CPU cores [72]. One existing work, Metron [72] can process packets
potentially at L1 cache speeds. In particular, Metron offloads part of the packet processing logic
to the network to eliminate inter-core transfer and handles the remaining packets with tag-based
hardware dispatching so as to achieve a potential L1 cache speed for processing them. Assisted
with commodity hardware, Metron can process deep packet inspection at the speed of 40 Gbps and
realize stateful NFs at the speed of a 100 GbE network card on a single server. However, it inherits
the limitations of SNF [73], which makes it only applicable to fairly limited service chains. In short,
considering that only a few tens of CPU cycles are available for each packet at 100 Gbps, it is a
huge challenge for achieving either high throughput or low latency of NF chains.

3 COMMON SOFTWARE FRAMEWORKS, SWITCHES/ROUTERS AND HARDWARE
FOR NFV ACCELERATION

Before investigating the state-of-the-art approaches in the field of NFV acceleration, we first give
a general understanding of some necessary prerequisites. In this section, we briefly introduce
the software frameworks, software switches/routers and popular hardware that are commonly
associated with NFV acceleration.

3.1 Software I/O frameworks and Switches/Routers
High-performance software frameworks have been developed to provide high packet I/O speed
since several years ago. Until now, the most popular examples are Intel Data Plane Development Kit
(DPDK) [29], netmap [118], PF_RING [103] and PF_RING DNA (Direct NIC Access) [119], Snabb
[107], and OpenOnload [129]. These frameworks achieve performance improvements either via
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bypassing the OS kernel and running applications in user space or sharing memory buffers that
can be accessed by both kernel and applications [9, 116]. There are some software switches that
run on top of a network I/O framework, such as VALE switch [120] and OvS-DPDK [41]. We also
discuss some popular software switches (or routers) such as Open vSwitch (OvS) [36, 112], Berkeley
Extensible Software Switch (BESS) [50] (a.k.a., SoftNIC [51]), and Click Modular Router [78]. Table
2 summarizes the general information of these frameworks and switches/routers.

DPDK. DPDK consists of a collection of data plane libraries and NIC drivers for high-speed
packet processing. By calling DPDK libraries and application program interfaces (APIs) in the user
space, applications continuously poll instead of handling interrupts for each arrived packet. In
this way, the overheads inherent in traditional networking stack can be eliminated. DPDK also
implements a set of optimizations including lock-free rings, thread affinity, NUMA awareness,
and huge page setting. In particular, the lock-free rings in DPDK are based on the Linux kernel
lock-free ring buffers to reduce locking overhead, which supports both one-to-one and many-to-
many producer/consumer models. Thread affinity means that DPDK binds threads to logical cores
to reduce context switches across cores and increase CPU cache hit rate. DPDK also implements
per-core memory in NUMA to deal with cache consistency and uses 2 MB and 1 GB huge pages
to reduce the case that translation lookaside buffer (TLB) misses. DPDK maintains hardware
independence since it provides a programming framework for any processors. DPDK can boost the
packet processing performance by 10 times, reaching more than 80 Mpps throughput by using a
single processor [57]. However, the CPU overhead is not reduced since DPDK Poll Mode Drivers
(PMDs) run in busy loops by constantly scanning either physical NIC ports on the host or vNIC
ports in guests for the arrival of packets.

netmap. Netmap is a high-performance framework for packet I/O. It reduces or eliminates
substantial overheads such as per-packet memory allocations, system calls and packet copying by
introducing three optimization techniques, i.e., buffer preallocation, use of large batches and shared
buffers. All of these are for fast transmission of packets through the NIC to applications in the user
space. Note that netmap has two modes to allow users to decide whether packets should go through
the host stack or not [20], while the netmap mode allows packets to be directly delivered to an
application through the netmap API. The implementation of netmap brings minor modifications
and does not depend on special hardware. According to [118], netmap can easily reach line rate on
a 10G NIC with 64B frame size.

P4. P4 [16] is a high-level programming language used for protocol-independent packet pro-
cessors, which can work as a general, flexible interface between the switches and the controller
for matching header fields and parsing packets. A simple API is provided by P4 for connecting
the actual hardware implementation of the switch. In short, P4 can achieve three goals: protocol
independence (i.e., switches should be able to handle packets of different formats), reconfigurability
(i.e., the controller can redefine how to parse and process packets) and target independence (i.e.,
programmers can describe the functions to process packets without knowing the details of hardware
implementation). As compared with commonly-used programming languages (e.g., C or Python),
P4 is a domain-specific language, which provides high-level abstraction for network programming
and optimizes network data forwarding through a set of carefully-designed constructs.

PF_RING (DNA). PF_RING is an efficient packet capture technology based on the Linux kernel
[5]. The core solution of PF_RING is to decrease the copy time during the transmission processes of
packets. To this end, PF_RING polls packets from the NIC to ring buffers, and then the user-space
applications read packets directly from the rings, by means of utilizing Linux New API (NAPI).
However, this mechanism has to experience two polling periods for both NAPI and the application,
and consumes extra CPU cycles. To reduce CPU consumption for polling packets, PF_RING DNA
copies packets from the NIC to ring buffers by NIC NPU instead of NAPI. It has better performance
but the disadvantage is that only one application has access to the ring at a time and applications
need to exchange for each other to distribute incoming packets.

Snabb. Snabb is a fast packet processing toolkit written in the scripting language Lua. It allows
developers to add functionality to the Snabb stack by loading modules into the Snabb engine, which
makes Snabb extensible. These modules can be Lua or other native code objectives, which are
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Table 2. Common software I/O frameworks and switches/routers.

Framework Begin time Organization Description
DPDK 2012 DPDK A set of data plane libraries and drivers

netmap 2012 Universita di Pisa A high-performance network I/O
framework

P4 2014 P4 Language
Consortium

A language for programming protocol-
independent packet processors

PF_RING (DNA) 1998 Ntop Team A new type of network socket
Snabb 2012 Snabb Lab An extensible networking toolkit
OpenOnload 2008 Solarflare A high-performance network stack
Switches/Routers Begin time Organization Description
VALE switch 2012 Universita di Pisa A software Virtual Local Ethernet
OvS-DPDK 2014 Linux Foundation DPDK accelerated OvS
OvS 2012 Linux Foundation An open-source virtual switch
BESS 2015 Berkeley A modular and software switch
Click 2000 MIT A modular and software router

named as libraries and Apps, respectively. A specific application is modeled as an App network,
and the Apps can be very simple or complex operations in NFs. As a result, developers can build
customized software packet processing network by resembling reusable Apps. Snabb supports NFV
as it allows fast data exchange between VMs and provides user-space drivers similar to DPDK.

OpenOnload. OpenOnload is a high-performance framework that not only significantly reduces
latency and CPU utilization, but also increases packet rate and bandwidth [129]. It runs on standard
Linux and requires no modifications to applications. Its high performance partly stems from
detouring the OS stack so that the packet processing can be fully performed at user space. Note
that OpenOnload is a hybrid stack, which allows applications to flexibly run either at user space or
kernel space for any traffic to choose, whichever is appropriate. Applications using OpenOnload
typically see a 4-time improvement in message rates.

The following is an introduction to the software switches or routers in the literature.
VALE switch. VALE is a software Virtual Local Ethernet. The ports on VALE can communicate

using the netmap API. It is designed to be used to interconnect multiple VMs, working as a learning
bridge in the host. It can achieve very high-speed communication between different types of VMs
(up to 20 Mpps with short frame). However, as VALE is developed as a small extension of the
netmap module, both QEMU and KVM hypervisors have to be modified for accommodating the
new network backend.

OvS-DPDK. OvS-DPDK is a form of accelerated OvS with DPDK datapath support, by taking
advantage of the DPDK libraries to bypass the host kernel. It appears like creating a user-space
vSwitch on the host by using DPDK PMD driver. As a result, OvS-DPDK can achieve up to 10 times
performance improvement than native OvS.

OvS. OvS is an open source software switch and usually served as a virtual switch in a virtualized
environment residing on the hypervisor. OvS nearly supports all L2-L3 network switches such as
NetFlow and sFlow. The original intention of OvS is not for speeding up packet processing but for
easing the management and configuration of the virtual networks. While OvS uses Linux kernel
networking to switch packets between VMs, the performance of native OvS is often unsatisfactory
(the performance can be as much as 50 times worse than that of bare metal environment).

BESS. BESS is a modular framework for software switches to overcome the severe contradiction
between limited NIC abilities and dynamic demands from the users. It allows developers to flexibly
add NIC features in software while incurring negligible performance overhead. Borrowing the
basic concept from Click, BESS makes it possible for a user to customize the packet processing by
using a number of modules. When connecting two modules, a user can create a traffic class. For
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delivering packets between two modules, the user then assigns a dedicated core where the traffic
class runs as a unique thread. BESS can achieve multiple-10G performance even on a single core.

Click. Click is a very popular software router that can be configured in a flexible and modular
way. A click router consists of multiple elements, each of which processes packets to implement a
single router function [140]. It is very easy to extend Click due to its modularized design. Except
for routing, Click can also be used for rapid prototyping and new protocol development. Great
efforts have been paid by researchers to improve the performance of Click, such as RouteBricks
[28], DoubleClick [76] and FastClick [10].

Obviously, each software framework has its advantages and disadvantages. For instance, polling-
based approaches such as DPDK obtain desired performance at the cost of high CPU resource
consumption, while interrupt-driven frameworks such as netmap need large batch sizes, which can
also harm performance like latency [153]. Gallenmüller et al. [38] present a comprehensive survey
of the state-of-the-art high-performance packet I/O frameworks. They make a comparison among
DPDK, netmap and PF_RING in representative packet forwarding scenarios. Hence, they reveal the
impacts of caching and establish a model to evaluate the performance of the three frameworks.
Besides, although there may exist other similar frameworks, we focus on the frameworks above
since we regard them as the most relevant ones.

3.2 Popular Hardware
To achieve high performance, another popular method resorts to employing popular hardware
such as network processor units (NPUs), graphics processing units (GPUs), field programmable
gate arrays (FPGAs) and smart NICs (sNICs) for NFV acceleration. A common practice is to offload
NF processing from the host to hardware, then NFs can perform much faster than when they are
executed on a general-purpose CPU. In contrast to special hardware such as application specific
integrated circuits (ASICs), these pieces of hardware have many advantages. Table 3 presents a
brief introduction to the hardware that can be employed for NFV acceleration.

NPU. NPU is a programmable and general-purpose processor specially designed for packet
processing. It adopts multi-core architecture with parallel processing capability, high-speed interface
and I/O capacity, which is commonly used in the communication field to perform packet processing,
protocol analysis, route lookup, voice/data convergence, etc. The execution logic inside an NPU
depends on the software loaded during the runtime, which is developed using a dedicated instruction
set, i.e., microcode. NPUs are used in the manufacture of a variety of network devices such as
software routers, switches, firewalls and session border controllers (SBCs).

GPU. The original role of GPU is for graphics rendering. Now GPU has been widely used to
supplement a CPU and accelerate many compute- and memory-intensive applications due to its
extreme thread-level parallelism, which makes it very suitable for packet processing. GPU can be
used for various NFs such as software routers [52], IPsec gateways and network intrusion detection
systems (NIDSes) [43].

FPGA. FPGA contains an array of programmable logic blocks using a large number of gates.
These logic blocks can be configured to perform complex functions. Besides, FPGA also includes
memory elements to store states and data, and has a large number of parallel cores within an
FPGA chip. However, low-level hardware description languages (HDLs) like Verilog and VHDL,
have to be used to program FPGA [88], which make the programming efforts to be huge. On
this account, high-level synthesis (HLS) tools [20] that allow developers to program FPGA with
high-level programming languages [88] are adopted in many FPGA-based solutions.

sNIC. sNIC is an enhanced NIC which often has its own multi-core processors and an internal
switch compared with traditional NICs. A standard OS can run within the sNIC, which makes
it possible to offload almost any packet processing functions from CPU, such as security-related
applications [98, 124]. Note that some sNICs can be manufactured using other hardware, such as
FPGAs [100, 134].

Similarly, different hardware also has its strengths and weaknesses. Though NPU has advantages
such as high performance and programmability, its applications are still limited due to the high cost
and domain-specific restriction (generally applied to dedicated communication devices). As different
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Table 3. Common popular hardware for NFV acceleration.

Hardware Feature Use in NFV
NPU Programmability Optimized for packet processing in network devices

GPU Massive parallelism Improve the throughput of compute- and memory-
intensive applications

FPGA Reconfiguration Accelerate complex packet processing with high perfor-
mance and flexibility

sNIC Flexibility and
programmability Offload almost any NFs from CPU for processing

vendors have different microcode standards for NPUs, developers usually get stuck in building
an ecosystem. Though the microcode of some NPUs has supported to be compiled and generated
using high-level languages like C, its conversion efficiency is poor. Based on [69], the advantages
of GPU for packet processing are vectorization and memory latency hiding when compared to
CPU. However, the communication between CPU and GPU introduces latency. The processing of
large batches of packets on GPU further increases latency. Moreover, GPUs will no longer have the
advantage of a big part of memory bandwidth compared to CPUs under random accesses, as the
memory subsystem in GPUs is optimized for adjacent access. Compared with NPU, FPGA is more
versatile due to its reconfiguration feature. Furthermore, FPGA is more power-efficient than GPU.
In contrast to CPUs or GPUs, the major advantage of FPGA is that it can provide ultra-low latency
through the PCIe channel between CPU and FPGA, which is just in the order of nanoseconds.
However, the programming complexity of FPGA is non-trivial and hinders the development of
this technology for years [8]. For sNICs, they typically have limited total compute and memory
capabilities compared to CPUs.

Although there may exist other hardware for NFV acceleration, we focus on the listed hardware
above since they appear in the surveyed works most frequently.
Besides, a standard specification called sing-root I/O virtualization (SR-IOV) [82] is commonly

used to improve the throughput of NFs. It defines a mechanism to create shared network devices
called virtual functions (VFs). This sharing makes a sing I/O device appear to be multiple separate
physical devices. By providing independent memory space, interrupts and DMA streams, SR-IOV
bypasses the host kernel in data transfer. However, SR-IOV is hardware-dependent since it needs
the support of NICs. It also has theoretical limits as a physical device at most supports 256 VFs.

4 TAXONOMY AND SURVEY OF ACCELERATION APPROACHES
After we carried out a comprehensive investigation of the research efforts in the field of NFV
acceleration, we propose a taxonomy for these works according to various acceleration approaches.
As illustrated in Figure 3, we classify computation and communication acceleration as two main
categories of NFV acceleration, since NFs are usually identified to be compute-intensive (e.g., IPsec
gateway) or network-intensive (e.g., network address translation). Many solutions are proposed to
accelerate these NFs with strict performance requirements. Recently, some works [132, 156] in the
literature have studied how to improve NFV performance through network function parallelism,
which are different from previous acceleration approaches. Hence we add this acceleration technol-
ogy as an independent category in order to draw more attention. Besides, packet steering happens
repeatedly in every step of a service chain to handle a packet and can cause severe inter-core
transfers without proper acceleration. Therefore, we also add the packet steering acceleration as a
separate category, which is very crucial for improving service chain performance in NFV.

For some categories, we classify them into more subcategories based on the specific means they
employ. Specifically, the taxonomy contains the following aspects of NFV acceleration:

• Computation Acceleration: no matter which means to adopt, either with hardware of-
floading, software tuning or modularized reuse in NFs, the essence of the approaches is to
reduce CPU resource consumption. According to this purpose, we classify those approaches
into this category. (See Section 4.1)
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Fig. 3. Taxonomy of the surveyed NFV acceleration approaches.

• Communication Acceleration: in this category, the approaches generally exploit high
performance I/O frameworks and I/O passthrough technology such as SR-IOV. The primary
purpose is to speed up packet processing and improve throughput. (See Section 4.2)

• From Serial to Parallel Acceleration: we treat this category as NFV-specific, since it is
optimized for decreasing latency by running some NFs of a service chain in parallel without
violating NF dependencies. (See Section 4.3)

• Traffic Steering Acceleration: the purpose of this category is to decrease inter-core com-
munications or deal with more complex situations in traffic steering, by utilizing efficient
steering models. Considering that many NFs are stateful, this form of acceleration is vital to
achieving high-performance service chains. (See Section 4.4)

Note that the classified characteristics of NFV acceleration approaches might be correlative,
particularly the subcategories between computation and communication acceleration, and between
communication and traffic steering acceleration. For instance, the benefits of software tuning can be
multifold. On one hand, tuning techniques such as data prefetching and batch processing of packets
ensure rapid NF computation in processors. On the other hand, techniques such as zero-copy packet
delivery using shared memory enable fast communication between NFs. The branches of a certain
subcategory can also be correlative, while we just highlight the dominant features. For example,
some sNICs are manufactured using FPGAs [100, 134]. Besides, other techniques such as keeping
the cache line aligned to avoid packet transfer among multiple cores, conform to the idea of traffic
steering acceleration. In this taxonomy, we just classify software tuning in computation acceleration
as a representative. Furthermore, our taxonomy also considers different levels of NFV acceleration,
from an NF block [17] abstracted from a monolithic NF to a service chain that connects multiple
NFs. Other studies on NFV acceleration [18, 21, 86] provide a rather coarse-grained taxonomy or
focus on only one aspect. Specifically, Bronstein et al. [18] focus on hardware acceleration and
advocate solving the compatibility problem by providing an abstraction to hide the complexity
of the implementation. Chatras et al. [21] target on NF’s portability across different platforms
for delivering high performance, and classify acceleration solutions into software and hardware
acceleration. Lettieri et al. [86] just focus on the NFV data-path. By contrast, our work is more
comprehensive and covers the contents of the three studies above.
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Besides, energy consumption should not be sacrificed in accelerating NFV. We would not discuss
it further with few related works. Data traffic demands (e.g., synthesized or adversarial workloads)
are of great importance in benchmarking NF performance, see Section 6.2 for details.

In the subsequent sections (from Section 4.1 to Section 4.4), we introduce and discuss the surveyed
works according to this taxonomy. In Section 4.5, we briefly summarize and compare these works.

4.1 Computation Acceleration
Computation acceleration is often used to enable high performance for compute-intensive NFs,
such as encryption and transcoding, which require significant CPU resources and involve complex
CPU calculation. There are three types of methods in computation acceleration literature, namely,
hardware offloading, software tuning and modularized reuse.

4.1.1 Hardware Offloading. The most common approach in computation acceleration is to utilize
specialized hardware, which is referred to as look-aside accelerator in [44]. Moving NFs to acceler-
ator hardware significantly saves CPU resources, which could be spent in other revenue-generated
applications. Hardware offloading solutions have long been a research topic in developing high-
performance applications. In the following, we review these works according to the hardware they
employ.

NPU-based solutions. NPUs have been used for improving the performance of some specific
NFs such as software routers and switches. In this respect, NP-Click [126] is proposed to close the
gap between the ease of implementation and efficient implementation. NP-Click is based on Click
and provides a programming model for the Intel IXP1200 network processor. The evaluation results
on two applications (IPv4 packet forwarding and DiffServ interior node) demonstrate that NP-Click
achieves very good performance. Ferkouss et al. [35] implement a high-performance OpenFlow
[95] switch on EZchip NP4 network processor. As OpenFlow is rule-based, the authors leverage the
flexibility of the switch by updating the flow entries on the fly. Meanwhile, using recursive flow
classification (RFC) helps improve the parallelism of the classification process and better exploit
the hardware resources. POF [130] builds a hardware-based prototype with the help of NPU. The
goal of POF is to eliminate the dependency from forwarding devices (such as switches) without
configuring specific protocols and promote the data plane. POF defines a generic flow instruction
set to achieve this goal. By taking advantage of the hardware packet parsing modules in the NPU,
the authors believe a POF optimized silicon chip can help improve the performance, thus achieving
lower network cost and creating new value by enabling flexible network services.

GPU-based solutions. While GPU has higher computation capability and more sufficient
programmability than NPU, PacketShader [52] takes the first step to exploit the power of GPUs in
packet processing for developing a software router framework. By processing packets in batch,
offloading specific packet processing operations to GPUs and scaling them in parallel, PacketShader
achieves remarkable higher throughput compared to the CPU-only implementation, while the
flexibility and programmability of a software router are still reserved. NBA [77] is a software-based
packet processing framework that enables GPU but hides low-level details. It not only maximally
exploits the hardware advances (such as batch processing, NUMA awareness, etc.), but also provides
an abstraction layer for GPU offloading and achieves adaptive load balancing between CPU and
GPU in various workload conditions. As such, the sample NFs of NBA reach up to 80 Gbps for
both IPv4 and IPv6 routers, and to above 30 Gbps for IPsec and IDS. Snap [133] is a Click-based
packet processing framework that surpasses previous software routers by exploiting the parallelism
provided with GPUs. To make GPU elements easily integrated into a processing pipeline, Snap
adds a collection of high-performance extensions to the native Click. To achieve this, the authors
introduce a set of techniques, including packet slicing to reduce the consumption of bus bandwidth,
and predicted execution to deal with the graph composed of Click elements and schedule packets
in a pipeline that can be completed in order. They also accelerate common NFs with a collection of
GPU-based elements. The evaluation results show that Snap can forward 44 Mpps with a packet size
of 128 bytes, even when using elements to implement NFs such as an IP router, a packet classifier and
a string matcher with a full payload. This outperforms the baseline CPU-based Click by nearly four
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times. DoubleClick [76] is another Click-based solution that focuses on boosting the performance of
Click router by employing I/O and batch processing, including a variety of optimizations for current
server architectures. For IPv4 packets with size of 64 bytes, the performance can be improved by
nearly 10 times through exploiting these techniques. DoubleClick falls into this category since it
adopts PacketShader’s packet I/O engine for I/O batching.

To reduce the programming efforts for developing high-performance GPU-based network appli-
cations, Vasiliadis et al. [136] present a network traffic processing framework called GASPP, which
is elaborated for modern GPUs and well-integrated into a GPU-based prototype. GASPP allows
developers to build complex GPU-based NFs in a flexible and efficient manner through hiding
complex network processing issues, while providing an interface that shows only the data to NFs.
The authors also propose a novel packet scheduling mechanism to avoid redundant data transfer
and fully use the GPU and the PCIe bus, for efficient memory sharing between network interfaces
and GPU. Other optimization techniques such as zero-copy and batch packet processing are ap-
plied to the framework design. Based on the evaluation results, GASPP can obtain multi-gigabit
throughput even for some compute-intensive and complex network operations that commonly exist
in many NFs. In the case of NF consolidation, GASPP obtains as high as 16.2 times performance
improvement compared with single-GPU implementations. There are also many works that focus
on specific NFs with GPU acceleration, including Kargus [59], Gnort [135] and MIDeA [137] for
intrusion detection, and SSLShader [61] for cryptography.

Besides, GPUNFV [146] also exploits the advantage of GPU that delegates packet processing to
GPU threads in great parallel. Different from previous approaches, the authors advocate deploying
an entire service chain on GPU, which not only potentially reduces the number of needed GPUs,
but also decreases data switching between CPU and GPU. What makes it unique is that it efficiently
supports both stateful and stateless NFs, by processing the packets of the same flow on the same
GPU threads. The evaluation shows that GPUNFV increases the throughput by more than 2 times,
compared to packet processing only with CPU. Besides, the waiting time of CPU is no longer
required and GPUNFV can quickly get the optimal batching size of packets with the dynamic sizing.

However, the capacity strength of GPU compared to CPU in speeding up NFs has been questioned
in an existing work [69]. They claim that the performance improvement of GPU comes from less
memory access latency rather than its fast parallel computing, and applying optimization techniques
such as group prefetching and software pipelining to GPU code usually results in more efficient
resource utilization than native GPU acceleration. Aiming at this doubt, APUNet [43] proves the
efficacy of GPU in accelerating NFs and discovers three facts. First, GPU’s computational power
makes a critical difference in accelerating many compute-intensive NFs. Second, GPU’s acceleration
power without data transfer outperforms the optimized CPU code. Third, the capability of PCIe
communication hinders the offloading of GPU workload, rather than the capacity of GPU. By
adopting integrated GPU in accelerated processing units (APUs) and addressing a few practical
challenges, APUNet extracts more computational power from integrated GPU with the help of
extensive zero-copy models and massive parallelism. It also achieves low-latency data transfer
between CPU and GPU. As a result, APUNet improves the performance of many memory- or
compute-intensive NFs such as IPsec gateways, SSL proxy and NIDS by 2.2 times to 4 times.
However, the performance improvement is not obvious for simple NFs like IPv4 forwarding.

Although GPUs have demonstrated their power in accelerating NFs, Zhang et al. [149] claim that
GPUs still have not been effectively integrated into NFV systems yet. They find GPUs are not fully
utilized, data isolation cannot be ensured and great development efforts are required in existing
GPU-accelerated NFV systems. Thus, they propose G-NET [149], an NFV system that supports
several features such as spatial GPU sharing, GPU scheduling and data isolating in GPU. Specifically,
by generalizing the CPU-GPU pipeline, data transfer and multi-threading, G-NET provides an
abstraction for developing NFs. Therefore, software developers simply need to implement a few
specific-purpose NFs, which can largely reduce the development and implementation costs. Through
evaluation with various workloads, G-NET is proved to reduce the latency of an SFC by 44.3%
and increase the throughput by 70.8%, as compared with the temporal GPU sharing virtualization
method.
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FPGA-based solutions. Since FPGA is more versatile than NPU and more power-efficient than
GPU, ClickNP [88] chooses to accelerate NFs using FPGAs that are considered to be inexpensive.
Generally, it is rather hard to tune the logic and debug the code of FPGA since it is usually
programmedwith hardware description languages. ClickNP overcomes the programming challenges
by implementing it in a modularized fashion, with the help of commercial high-level synthesis tools.
By exploiting the massive parallelisms in FPGA with a set of optimization techniques, ClickNP
obtains high throughput up to 200 Mpps and ultra-low latency for various types of software NFs.
Compared with existing GPU-accelerated and pure CPU-based counterparts, ClickNP not only
improves the throughput but also reduces the latency. To further implement rich as well as high-
performance NFs besides packet processing functionality, Emu [131] develops a new standard library
for NFs on FPGAs, while providing an execution environment that is easy to program and debug.
Using Emu, developers can rapidly implement and deploy various NFs by programming FPGAs
with a high-level language, while supporting fine-grained debugging and profiling capabilities to
monitor the states of NFs at runtime. Compared to Linux native counterparts and native Verilog
implementations, the performance of Emu significantly outperforms the former in both latency
and throughput, while incurring a negligible overhead compared to the latter.

Considering that FPGA is expensive (compared to general-purpose CPU) and the limited number
of building blocks on an FPGA board, it is both resource-demanding and cost-inefficient if the
entire NFs are implemented on FPGA. Moreover, employing FPGA to accelerate the whole service
chain is inflexible, due to the fact that FPGA has to be reprogrammed when introducing new NFs
and the reprogramming time can be hours for tuning the code. To overcome the problems above, Li
et al. [91] present a novel framework with CPU-FPGA co-design called dynamic hardware library
(DHL), while providing both high performance and flexibility for NFV systems. To achieve this,
DHL abstracts accelerator modules in FPGA as a hardware function library and provides a set of
programming APIs linked to these accelerator modules. In this way, DHL decouples the hardware
development of FPGA accelerator modules and software development of NFs, which enables both
hardware developers and software developers to intently apply their expertise. To ensure fast
communication between FPGA and CPU while keeping very low latency for NFs, DHL also designs
an efficient DMA engine by employing a series of optimizations to improve the efficiency of data
transfer. The evaluation results show that DHL can reach high throughput by up to 40 Gbps that
is similar with FPGA-only solutions, and only incur latency less than 10 µs, while enjoying the
flexibility that is lacking in FPGA-only solutions.

sNIC-based solutions. To offload NFs from host CPUs to sNICs, UNO [84] proposes a gen-
eralized NF offloading architecture that is managed by an SDN (software-defined networking)
controller, for achieving the maximum resource utilization of both sNIC and host. It is non-trivial
to achieve this due to three challenges. First, the sNIC is incapable of hosting all NFs and network
switching in it, due to its limited total compute and memory capacities. Second, the CPU-sNIC
co-design framework imposes extra bandwidth consumption on account of frequent data transfer
between the host architecture and the sNIC. Third, the fact that packets traveling through multiple
NFs between the host and the sNIC put great pressure on the controller. To address these challenges,
UNO introduces an NF agent which makes the SDN controller unaware of the existence of the sNIC.
To intelligently balance the load between the host and sNIC, UNO leverages a mathematical method
to decide where an NF should be placed (at the host or on the sNIC). For ease of management, UNO
translates rules from the SDN controller into rules that are used for NF traversal between the host
and sNIC with OneSwitch of UNO. Experiment results demonstrate that UNO can use less than 8
CPU cores, while reducing the power consumption by 2 times and the management overhead of
the SDN controller by more than 50%. Besides, Floem [113], a programming system, also targets at
offloading computation to sNIC, while providing programming abstractions to overcome many
common problems for developers, such as expression of communication strategies, data consistency
and reuse of the code. Floem can accelerate many datacenter applications with sNIC offloading,
including key-value store and data analytics, and improve the performance of common NF tasks
such as encryption and flow classification.
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When NFs on sNICs are overloaded, UNO adopts a naive solution to alleviate this condition by
migrating the bottleneck NF that occupies the least sNIC resource. This incurs increased latency of
a service chain since packets have to travel through PCIe for two more times. To overcome this
problem, Meng et al. [96] propose PAM, the push aside migration solution, to intelligently migrate
the right NFs to avoid the hot spot on sNIC. Specifically, they select to migrate NFs that lie on the
border between sNIC and CPU, while releasing the resources on sNIC to serve the bottleneck NFs.
As a result, extra packet transmissions over PCIe can be avoided. Since it is non-trivial to select the
right border NFs for migration, they further propose an effective algorithm to make the migration
decisions by establishing a resource model. The evaluation demonstrates that PAM can relieve the
hot-spot issue on sNIC, while reducing the latency of a chain of NFs by 18% compared with UNO.

4.1.2 Software Tuning. Software tuning refers to a set of optimization techniques in order to achieve
high performance. There may exist many tuning techniques in the literature, while we choose to
present those common ones including CPU pinning, zero-copy, batch processing, NUMA-aware,
lockless and parallelism techniques. Table 4 gives a brief description of these techniques.

Software tuning techniques are widely adopted in many existing works. A representative example
is Hyper-Switch [115]. As a scalable software-based virtual switch for virtualization platforms
(such as Xen [12]), one of its features is to combine with the advantages of both driver domains and
hypervisors, while eliminating the software overheads for achievable I/O performance inherent in
hypervisors, without incurring associated memory sharing overheads for packet delivery between
VM and the NIC driver. The other feature is a set of optimizations that enable high performance.
Specifically, Hyper-Switch removes the costs of hypervisor entries and guest announcements by
using state-aware batching of packets, reduces the packet arrival latency by employing preemptive
copying, and considers CPU cache locality when using low-overhead techniques to dynamically
offload packet processing to idle CPU cores, respectively. All these optimizations yield improved
network performance. In the evaluation for measuring the total inter-VM network throughput,
Hyper-Switch reaches throughput up to 81 Gbps while it only achieves about 31 Gbps and 47 Gbps
on Xen and KVM, respectively.

To eliminate the performance overheads in a virtualized environment such as VMs or containers,
NetBricks [108] takes a bold step for building and running NFs in a bare-metal environment while
providing the equivalent isolation in software, resembling VMs and containers. By allocating a
dedicated CPU core per NF or running an NF chain on a single CPU core, NetBricks shows several
to ten times better performance than the case of NFs running on the basis of a VM or container,
for both individual NF and NF chain. NetBricks also introduces a novel technique called zero-
copy software isolation (ZCSI) and runs each NF chain as a single process to reduce packet I/O
cost. To maximize the performance, each NF chain is entirely placed on the same CPU core in
NetBricks, while replicating the processing graph across cores for scaling. NetBricks implements
run-to-completion (RTC) processing of each packet and round-robin scheduling to schedule packets
among processing nodes. In particular, the RTC model used in NetBricks ensures a packet to be
continuously processed from the time it enters an NF to the time it exits, which can avoid inter-core
transfer and reduce context switching cost so as to improve the performance. Besides, vTurbo
[144] offloads a process to a specialized core called turbo core, which is separated from a CPU core
with its exclusive time slice. Offloading workload to dedicated turbo core mitigates the influence
of VM’s regular core access latency. As a result, vTurbo prominently improves application-level
performance in terms of network throughput.

Note that some works may belong to different acceleration categories. In terms of computation
acceleration, for instance, NetVM [56] applies many low-level software tuning techniques in its
system design. Building upon KVM hypervisor and Intel DPDK framework, NetVM inherits several
advantages from DPDK. By using huge pages provided by DPDK, NetVM can work in a NUMA-
aware manner. When forwarding packets between the VMs and host, NetVM only needs to copy a
packet descriptor through the shared memory, while the packet data still stays in huge page without
any copy operations. For shared memory management, NetVM achieves lockless memory design by
allocating cores to each parallelized queues, so that the context switching for a contested lock can
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Table 4. Common software tuning techniques.

Technique Idea Effect

CPU pinning Execute a process (thread) only on
the designated CPU

Maintain processor affinity and
increase cache hits

Zero-copy Do not copy data from one memory
area to another

Save CPU cycles and memory
bandwidth

Batch processing Process multiple packets in batches Reduce the traversals on the PCIe
and I/O buses

NUMA-aware Enable a CPU accessing its own local
memory Obtain faster memory access

Lockless Manage shared memory in a lockless
fashion Avoid synchronization overhead

Parallelism Perform multiple tasks simultaneously
at the same time Increase task processing speed

be avoided. As a result, though NetVM uses multiple pipelined VMs to compose complex NFs, it still
achieves throughput up to 10 Gbps, which improves the throughput by over 2.5 times compared
with the performance of SR-IOV. IX [14] is a user-space networking stack that contains several
tuning techniques. IX provides a native, zero-copy API, supporting a batch mode for handling
packets until they are finished. Namely, for each network processing stage, the data planes of
IX execute all packets in batches. This approach amortizes API overheads and results in a good
locality of both instruction and data. To support scalability for multi-core architectures, IX exploits
multi-queue NICs to consistently hash the incoming packets to specific queues. This removes the
synchronization overhead when running multiple NFs in the data plane. We will further discuss IX
in Section 4.2.2 for its hardware-assist I/O processing.

In addition, some reviewed works such as DHL (batching) and NetBricks (zero-copy technique)
also exploit these tuning ideas to assist them to achieve high performance.

4.1.3 Modularized Reuse. In practice, different NFs often perform the same or similar processing
steps on the same packet. These similar steps are referred to as processing blocks in a processing
graph, which is abstracted from an NF. Packets will be processed by each block with individual
logic unit. Through in-depth inspection, these processing blocks show that they have very simple
operations on packets, such as just drop and alert, and also some complicated functionalities such
as payload match of packets or decompressing specific packets. Effective reuse of these processing
blocks on NF chains yields prominent performance improvement, especially in terms of per-packet
latency. We call this type of computation acceleration as modularized reuse.
For this purpose, CoMb [125] first discloses that middleboxes, which are built and managed as

standalone devices, incur the inefficiencies in the use of infrastructure hardware resources as well
as network management. Therefore, in CoMb, software-centric implementations of middleboxes are
re-architected at both device- and network-level, where consolidated middleboxes share the same
hardware platform. To achieve software element reuse, CoMb implements low-level processing
components for capturing packets, parsing packet headers, reconstructing TCP sessions, etc. Even
though running multiple reusable NF modules on the same hardware platform brings challenges on
performance isolation, security and fault tolerance, and CoMb has not addressed the implementation
challenges (e.g., software architecture, performance optimization, etc.), it still lights the way for
modularized reuse in NFV platforms.
Chowdhury et al. [22] follow up the work of CoMb and propose a disaggregated packet pro-

cessing architecture, named by MicroNF (𝜇NF in short) based on the concept of CoMb. In 𝜇NF
[22], the authors also demonstrate that monolithic NFs can lead to hardware resource wastage
due to the repeated implementation and execution of common functionality in SFCs, such as
packet parsing, packet classification, and session state reconstruction. 𝜇NF is a flexible service
composition architecture that uses reusable, lightweight, independently deployable loosely-coupled
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components and communication primitives for composing and implementing NFs for SFCs. Perfor-
mance optimizations including multi-socket NUMA machines and low-latency packet processing
functionalities are also implemented in 𝜇NF. Through evaluation, the authors verify that 𝜇NF-based
SFCs outperform monolithic NF based SFCs in throughput with fewer CPU cycles per packet
on average. To further deal with the frequent packet transfer and expensive hardware resource
consumption in modularized SFC, CoCo [97] provides a performance-aware approach for deploying
modularized SFCs. In order to minimize hardware resource consumption and packet transfer cost,
Coco compactly consolidates a set of lightweight components on the same VM (i.e., CPU core).
Furthermore, instead of scaling out a monolithic NF, Coco only scales out the element which is
overloaded, so as to reduce the scaling overhead. The proposed push-aside scaling up mechanism
in Coco can effectively avoid occupying new CPU cores and further degrading the performance.
Slick [7] also identifies the potential in implementing custom, fine-grained packet processing

blocks that could be reused throughout many NFs. They propose a solution for programming
NFs via a central controlling strategy, by writing a high-level control program to determine what
processing should be performed and how traffic should be routed to. However, Slick focuses
on efficient resource utilization and has scalability issues since its elements cannot be shared
within different NFs and only supports software data plane units. Instead, OpenBox [17] presents a
software-defined framework for NFs that maximally utilizes modularized reuse acceleration. To
manage NFs efficiently, OpenBox totally decouples the control plane from its data plane (where
the processing steps are executed) for each NF using a novel protocol, while similar data plane
entities are defined as OpenBox Instances (OBIs). The deployment of application logic is under the
control of the OpenBox Controller (OBC), which is a centralized control plane. The OBC provides
an abstraction layer to specify the NF logic as processing graphs and is responsible for merging
multiple NF graphs so that each packet can go through as few blocks as possible. That is, the
length of route between input and output blocks of a merged graph is shortest by reusing the
software modules across NFs. OpenBox also supports hardware-based OBIs for accelerating data
plane processing and customized building blocks in the control plane for developing new NFs.
Consequently, OpenBox gains a significant improvement in network performance, while having
great flexibility. However, OpenBox mainly deals with the case that a modularized SFC is consisted
of repeated elements whose internal rules pertain to different NFs and not conflict with each other.

As a more aggressive variant of OpenBox, SNF [73] synthesizes NF service chains by removing
the redundant operations (i.e., packet and I/O operations) for each traffic class. To merge packet
processing graphs, SNF employs the technique of graph search and graph set, which can build an
equivalent NF with a single read and single write operation for each packet. Thus, it gains much
higher performance than a chain with redundant operations, especially the deployment case with
longer chains of NFs running on an NFV platform. The limitations of this approach are also obvious
[30]. First, SNF is not suitable for every service chain. In other words, not all chains of NFs can be
synthesized to an equivalent NF with a single read and single write operation. Second, SNF does
not scale on multi-core architectures, which are critical for large scale NF deployment. Finally, the
efficiency of SNF relies heavily on the network operator’s control and knowledge about the service
chain. Inherited from SNF, Metron [72] integrates the benefits of SNF into its system design to
eliminate processing redundancy (e.g., inter-core transfers), which achieves a potential L1 cache
speed for processing packets. Different from SNF, Metron allows using multiple threads to leverage
multiple cores within each NF, while exploiting hardware-based dispatching that processes specific
traffic classes to those cores. However, Metron also inherits the limitations of SNF and requires
special hardware equipment (e.g., OpenFlow Switches).

While most of the existing systems concentrate on achieving efficient packet processing across
a service chain in L2/L3, they fall short in constructing more complex NFs at the transport layer
and above. These complex NFs often require additional processing. For instance, if each NF in
a chain performs TCP processing, TCP bytestream reconstruction may be performed multiple
times, which results in extra resource consumption. To address the problem, a framework called
Microboxes [92] is proposed to support transport-layer-and-above (L4-L7) NFs or even end-system
NFs like a caching proxy, while consolidating the protocol processing inside a chain to remove
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the extra work. Micorboxes falls into this category since it splits the stack into modules based on
the specific functionalities, so that network operators can build customized processing for each
NF or chain based on each flow, i.e., only the required parts of processing would be performed.
In order to separate stacks for both NFs and endpoint applications, Microboxes further designs
µEvent communication interface to transparently manage them. The evaluation results show that
Microboxes can double throughput via consolidating stack processing, and improve the throughput
by 51% via building customized TCP processing.

Last but not least, Chowdhury et al. [23] survey the state-of-the-art works from both academia
and industry in adopting microservice software architecture and realizing modular NF design
and flexible service composition for re-architecting the NFV ecosystem, including Click, CoMb,
𝜇NF, OpenBox, Microboxes, Flurries, NetBricks, etc. They conclude that building large-scale cloud
applications from reusable and independently deployable components is effective and beneficial to
speeding up innovation in NFV. They also outline a set of research challenges for microservice-based
NFV platforms.

4.2 Communication Acceleration
Communication acceleration is to enable high network I/O speeds for network-intensive NFs, which
are operated in the data plane and have to forward a large number of packets with minimum delay.
Typical NFs can be gateways in mobile packet core networks, broadband remote access servers
(BRASs), SBCs, etc. We further categorize communication acceleration into data plane boost and
hardware assist.

4.2.1 Data Plane Boost. Data plane boost, as introduced, generally resorts to high-performance
software I/O frameworks to speed up packet processing in the data plane. In the context of NFV
acceleration, many works are built upon these frameworks for high-performance networking.
In respect of DPDK, CuckooSwitch [157] creates a software switch with high scalability and

resource-efficiency, for fast and compact forwarding table lookup based on the design of cuckoo
hashing [31]. To process packet I/O between user-space and the NICs, CuckooSwitch employs
DPDK to achieve high throughput for packet processing when handling a great deal of L2 rules.
The evaluation results indicate that it can process 92.22 Mpps for a packet size of 64B when using
eight 10-Gbps Ethernet interfaces on a COTS server. However, the benefits of CuckooSwitch
are at the expense of losing flexibility in switching logic since the hardware Ethernet switches
are replaced. The reviewed work NetVM, together with its container-based version OpenNetVM
[154], is developed with more requirements for achieving high-speed communication. By taking
advantage of DPDK, both NetVM and OpenNetVM are capable of running complex NFs at line
rate (10 Gbps) on COTS servers. Moreover, they also enable high-speed inter-NF communication
so that complex NFs can be spread across multiple VMs or containers. In particular, OpenNetVM
greatly simplifies the development, management and optimization of NFs. Instead of running NFs
on VMs, OpenNetVM runs NFs using lightweight Docker containers. Consequently, it offers NFs
flexible control for routing packets in service chains with higher throughput. The evaluation results
demonstrate that OpenNetVM achieves a throughput of 68 Gbps when the load between two NF
replicas is balanced. For a chain of five NFs, it still achieves a throughput of up to 40 Gbps which
proves its deployment potential in carrier networks. There are also some other works that are built
on DPDK, such as the reviewed work DHL in FPGA-based solutions, and NFP [132] which we will
describe it later (in Section 4.3) to highlight its NFV-specific from-serial-to-parallel acceleration.
Regarding netmap, mSwitch [54] extends the VALE switch to provide a logically separated

switching fabric and the switching logic, thus achieving high performance with flexibility. Building
on netmap, mSwitch accelerates the packet delivery as an in-kernel module, which provides a
high-performance packet I/O and secure data path using memory buffers between virtual ports.
Considering the scalability to serve numerous virtual ports, it is designed to support up to 120
virtual ports. When multiple NFs arrive at a shared destination NIC simultaneously, mSwitch
implements a mechanism of destination port parallelism to improve the throughput. The validation
of mSwitch shows that a learning bridge outperforms the FreeBSD one by 8 times; a modified OvS
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with minor code changes results in a up to 3 times speedup; a filtering module permits mSwitch to
route packets to NFs (and discard undesired NFs); and a module can be performed as user-mode
protocol stacks. ClickOS [94] is another well-known netmap-based platform on Xen hypervisor
optimized for NF processing. For high-performance networking, it replaces the default software
switch OvS on Xen with the VALE switch, which can be used to interconnect VMs using the netmap
API, so that the bottlenecks of OvS can be avoided. ClickOS also makes considerable changes
to the Xen’s I/O subsystem, such as virtual network devices and the corresponding drivers. By
running many lightweight VMs concurrently in a single commodity server, ClickOS achieves high
scalability while reaching line rate on a 10-Gbps link. However, the development environment for
NFs is fairly limited since the NFs must be designed with Click’s predefined processing elements,
and does not run within a standard Linux OS. To alleviate the virtualization overhead without the
help of hardware-dependent technology such as SR-IOV and hardware passthrough, Garzarella et
al. [39] propose ptnetmap, a netmap-based virtual passthrough network device. Ptnetmap is totally
decoupled from the hardware, thus yielding high-speed communication among NICs, software
switches, or netmap links. The features of ptnetmap lie on the ability to provide high throughput
for both trusted and untrusted VMs (not supported in ClickOS and NetVM) and the unnecessity
of dedicated polling cores/threads that are required for DPDK-based solutions. As a result, using
ptnetmap, VMs can obtain line rate in a 10-Gbps link, and achieve over 20 Mpps and 70 Mpps to
untrusted and trusted VMs, respectively.

There are also some works that integrate both DPDK and netmap in their system design. FastClick
[10] is just such an example. Through reviewing a variety of characteristics provided by many high-
performance software frameworks, the authors of FastClick derive modern general principles for
the software design. Both DPDK and netmap version of FastClick are implemented. In comparison
with other software NFs such as an IP router, FastClick shows up to about 2.3 times speedup.

In addition, Jose et al. [67] investigate how to utilize P4 for compiling programs to programmable
data planes (e.g., the RMT and Intel’s FlexPipe architectures). They first propose the design of a
switch compiler utilizing abstractions to replace hardware implementation while mapping logical
lookup tables to physical tables. In order to further optimize pipeline occupancy, latency or power
consumption, they explore the interplay between the greedy-based algorithms and Integer Linear
Programming (ILP) solutions. However, they only compile stateless data plane operations to RMT
and FlexPipe (e.g., simple forwarding and routing), while not handling the stateful data plane tasks.
In the context of NFV, the vSwitch plays a key role in achieving high performance. Hence,

a user-space vSwitch called SnabbSwitch [109] is devised to aim at carrier-grade performance.
The novelties of SnabbSwitch exist in the implementation of vhost-user as well as the use of a
trace compiler. By conducting extensive benchmarking experiments, SnabbSwitch is proven to
outperform OvS-DPDK and can yield almost the same performance compared with hardware-based
solutions like SR-IOV.

Maybe due to the limitation that OpenOnload [129] only supports its own NICs from Solarflare
series and HP 570SFP+, few works can be found that are built on it for NFV acceleration. About
PF_RING, more information can be found in [38], including the comparison with DPDK, netmap
and Snabb.

4.2.2 Hardware Assist. To eliminate the overhead of virtualization, it has been long to use hardware
passthrough technology for high performance. As it has some disadvantages such as a limited
number of PCIe devices, another promising technology called SR-IOV is introduced to realize the
scalability by creating more VFs, as described in Section 3.2.

There are some hardware-based solutions that rely on SR-IOV technology for high performance.
Among them, Arrakis [111] exploits this hardware feature to get direct access to vNICs for elimi-
nating the overhead of the OS process abstraction in the kernel. Specifically, it splits the traditional
kernel in two roles, which not only allows packet processing to entirely bypass the kernel, but also
provides both network and disk protection without the involvement of the redesigned kernel. The
evaluation results show latency reduction by 2-5 times and throughput improvement by 9 times for
a well-known NoSQL store compared with native Linux. Besides, IX [14] also relies on SR-IOV to
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implement a high-performance data plane OS. Based on hardware virtualization with multi-queue
NICs, IX separates control plane functions such as management and scheduling from the data plane
that focuses on packet processing. The data plane architecture is built on some software tuning
techniques, as introduced in Section 4.1.2. Through designating networking queues and hardware
threads to data planes, IX eliminates high context switching costs like synchronization overhead.
The authors demonstrate that IX results in both high I/O performance and low latency by using its
user-space networking stacks.
Kourtis et al. [79] exploit both SR-IOV and DPDK, and choose DPI as a representative use case.

They implement the DPI NF using libpcap, DPDK and SR-IOV, respectively, thus demonstrating
the benefits of using SR-IOV enabled devices with DPDK to enhance the high performance of DPI.
The evaluation results show that using SR-IOV and DPDK jointly can achieve significantly better
throughput, compared to traditional Linux protocol stack.
However, hardware-assist solutions inevitably limit the flexibility of the actual development

of NFV as they break the software abstraction. Concretely, VMs or containers must be initiated
on servers where SR-IOV capable NICs are placed, and the features offered to the VM depending
on the capabilities of the specific NIC hardware. SR-IOV-based solutions also do not support VM
migration. Moreover, theoretical limits are non-negligible factors when employing this technology.
That is, most NICs can effectively support only about 8-16 VFs for 1-GbE ports and 60-64 VFs for
10-GbE ports, otherwise it will experience a performance hit for supporting more VFs.

4.3 From Serial to Parallel Acceleration
Note that current NFV acceleration efforts concentrate mainly on sequential service chaining, i.e.,
performing each NF of a service chain from a horizontal scope. A study from industrial networks
indicates that 53.8% NF can be parallelized as a pair, i.e., the actions on packets of an NF pair will
not conflict with each other. On the premise of satisfying parallelism, 41.5% NF pairs will not cause
extra resource consumption [132].
Based on these observations, Sun et al. [132] propose a high-performance framework called

NFP, that allows parallelized NF to boost the performance of service chains, especially from the
perspective of latency reduction. Since NFP enhances NFV performance from a vertical scope
and runs NF in parallel as much as possible, we categorize this type of NFV acceleration as from
serial to parallel acceleration for service chains. To achieve this, NFP implements three logical
components: (1) a policy specification strategy to intuitively define various NFs with different forms
of connectivity into three types of rules, so that the parallelism optimization effect can be largely
improved, (2) NFP orchestrator to determine NF dependencies and automatically translate the
policies that describe the chaining intents into desired service graphs while incurring little resource
overhead, and (3) NFP infrastructure that merges the processed packets to avoid consuming extra
network bandwidth resource and uses a zero-copy packet delivery mechanism to support NF
parallelism. With the help of these effective designs, NFP could optimize the performance of service
chains with up to 35.9% lower latency.

Coincidentally, Zhang et al. [156] also discover the parallelism opportunities from chains of NFs.
In response, they present ParaBox, a novel hybrid NFV framework that performs packets to NFs in
parallel as far as possible, while merging the output together into the remaining sequential NFs.
To guarantee correctness, they address a series of challenges including the analysis of NF parallel
opportunity and the design of lightweight merge function. Through prototype implementation on
top of the DPDK-enabled BESS, ParaBox shows not only service chain latency reduction, but also
throughput improvement.

4.4 Traffic Steering Acceleration
It is crucial for an NFV platform to efficiently steer traffic through a service chain. From the time a
packet enters the system until it is processed by the last NF, each link needs to decide where to
process the packet. Without proper acceleration, the speed of traffic steering would fall behind
the desired steering capability for maintaining the high performance of a service chain. Therefore,
existing research efforts have proposed several traffic steering models in order to solve this problem.
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Industry solutions such as NSH [114] encapsulate packets with the required information for
forwarding through a service chain, but at the cost of increasing packet size.

In general, traffic steering acceleration is to exploit efficient steering models for providing flexible
and efficient switching capabilities, in order to reduce the overhead incurred from inter-core
communication and context switching, or to handle more complex situations (e.g., change some NFs
during the life of a TCP session, support high-layer NF processing) in steering traffic. Considering
that most NFs are stateful, the state of an NF often needs to be shared across multiple instances
when performing elastic scaling [40, 68, 141]. Concretely, OpenNF [40] incurs high overhead during
scaling events as it must first migrate all required states to the new NF instance for local access,
while StatelessNF [68] heavily sacrifices the performance since all state accesses are remote. In
response, S6 [68] improves the performance by proposing a distributed shared state model. Elastic
NF scaling involves a problem that migrates states across NF instances, while ensuring a packet to
be dispatched to the NF instance which has its state for processing the packet. The requirement is
called the affinity between packets and their states, which should be considered in traffic steering.
In the following, we present four steering models according to the literature.

4.4.1 Software Shim-Layer Model. This model relies on a software shim-layer (e.g., software switch)
with installed forwarding rules to determine which NF or NIC that a packet should be routed to. The
software shim-layer serves as an intermediate stop since each packet has to travel the shim-layer
twice when it needs to transmit from one NF to another NF (or NIC).
Many existing works adopt this model due to its flexibility to move packets between NFs via a

service chain. Some surveyed works, for example, NetVM [56] uses a global switch in the hypervisor
to alleviate overhead of OvS in traffic steering. Thus, it provides a flexible switching capability
without copying packets, which goes beyond DPDK vSwitches. ClickOS [94] replaces the default
OvS with the VALE switch to allow VM switching using the netmap API. Equipped with sNIC, UNO
[84] uses two switches in its hypervisor, one connects NF instances in place and the other connects
to offloaded NFs. OpenBox [17] runs all NFs in VMs on top of KVM hypervisor, and implements a
traffic steering application based on the OpenDaylight controller. Another work E2 [106] uses BESS
to allow packet processing modules to be dynamically configured. Though with great flexibility,
this model introduces considerable inter-core communications and thus affects performance.

4.4.2 Process Flow Model. With containerized NFs introduced, there are two forms to build a
service chain. Run-to-completion (RTC) form initializes NFs as native processes and consolidates
an entire SFC on the same CPU core. The pipelining form uses one core for each NF and constructs
a service chain with multiple cores. To steer packets through the service chain, the process flow
model usually contains two kinds of threads for receiving (RX) and transmitting (TX) packets
respectively. No matter which forms to use, if regarding the threads that run NFs as a whole and
combining two kinds of threads above, it shows a complete procedure for handling packets. Instead
of relying on a shim layer, steering packets through a chain are in charge of the threads.
Taking OpenNetVM [154] as an example, packets from NICs are constantly read by the RX

thread, which then puts the packets into the buffer queue of the target NF after looking up the flow
table. After processed by the NF, the packets are then moved by the TX thread to subsequent NFs
in the chain until forwarding out through another NIC. Two other works, NFP [132] and Flurries
[152] that both built on top of OpenNetVM, also belong to this model.
Due to the fact that a packet is no longer required to go through each thread twice, this model

incurs fewer inter-core communications compared to the shim-layer model.

4.4.3 Hardware-integrated Model. Apart from the software-based techniques above, existing re-
search efforts also consider making full use of features provided by hardware (e.g., NICs, OpenFlow
Switches) for faster traffic steering. We call this hardware-integrated model since it leverages the
combination of software and hardware. As stated earlier, current NICs usually support two features:
(i) Receive Side Scaling (RSS) does hashing on specific fields of a packet and (ii) Flow Director
provides packet classification and dispatching capabilities, both of which help to dispatch packets to
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multiple or specified queues as well as specific cores. With high programming flexibility, OpenFlow
switch performs packet lookup and forwarding according to flow tables at the speed of hardware.

Earlier surveyedworks, like NetBricks [108], FastClick [10], SNF [73] and a newwork FastPaas[155]
all exploit RSS for traffic steering. Specifically, both NetBricks and FastPaas use RSS to direct packets
to a CPU core, where all NFs in an SFC run as a single thread in a bare-metal environment. This
avoids inter-core overhead by processing a packet via an SFC entirely on the same core. Moreover,
FastPaas also leverages a new hardware technique, Intel MPX, to enable memory isolation among
processes on the same core. FastClick uses RSS to partition received packets over multiple queues,
thus enabling the reception of packets from the same device. SNF uses symmetric RSS to ensure that
packets of a flow are always sent to the same processor. Instead, CoMb [125] uses flow director for
dispatching traffic, which mainly focuses on consolidating NFs. Besides, OpenNF employs hardware
OpenFlow Switch, in which a central controller installs and updates forwarding rules for dynamic
service chaining. Recently, Metron [72] proposes to leverage both features of hardware OpenFlow
switch and the NIC, for dispatching stateless and stateful operations respectively. By this means,
Metron makes it possible to process packets at true hardware speed.

Without the aid of either a software shim-layer or dedicated threads, this model incurs just one
or even zero inter-core communications.

4.4.4 Protocol Level Model. To deal with the situation for more complex NF processing, there are
also some works that advocate employing a protocol-level model for traffic steering, which enables
dynamic service chaining or more efficient NF processing.
Dysco [147] proposes a session-level protocol to dynamically adjust a service chain, including

the addition, removal and replacement of NFs, and schedule traffic between anchor nodes. Dysco
adds a daemon to the Dysco agent for each NF, while adding a global controller for full-view
management. Compared to an insufficient SDN-based approach, Dysco can reconfigure and change
NFs in a variety of situations. As introduced earlier, another work Microboxes [92] is designed to
support the proper level of protocol processing or even end-system NFs with modular engines,
while eliminating extra work during protocol processing. Microboxes generates and consumes
events rather than packets, thus supporting a wider spectrum of NF types.

4.5 Discussion and Comparison of the Reviewed Works
In the previous sections, we have reviewed various acceleration works for addressing the perfor-
mance issues in NFV based on our taxonomy in Figure 3. We sort each work into the corresponding
categories in Table 5, along with some key characteristics such as acceleration method, application
scope and adopted techniques. Readers can refer to it to get a quick and general understanding of
each acceleration work.
Note that some works may belong to multiple categories, depending on the practical system

design. The acceleration methods of these surveyed works can also contain multiple types, ranging
from the used hardware and software frameworks to the adopted tuning techniques and optimization
design (i.e., reuse, pipeline and parallelism). In some works, we omit the least important acceleration
methods to highlight the dominant ones. Specifically, for the adopted techniques, we choose zero-
copy, batch processing and parallelism from many common performance-enhancing techniques
since they are widely used throughout many works. Some works are designed for service chains,
while some focus on specific NFs including IDS, cryptography, software switches and IP routers.
Nearly all surveyed papers carry out their experiments on a real testbed consisting of one or more
servers. This makes the results more convincing than simulation experiments. For the objective, a
majority of studies consider increasing the performance of their systems, either in terms of high
throughput or low latency. Certainly, there are also some works that focus on other objectives such
as high scalability, flexibility and load balance. Similarly, we just present the primary objectives
while leaving out the secondary ones. These objectives are orthogonal and complementary to
high-performance achievement.
There are no ideal solutions since the works in each category have their advantages and disad-

vantages. For the hardware offloading solutions in computation acceleration, the high performance
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(a) ACE-NIC 100. (b) NT200B01 sNIC.

Fig. 4. The product photos of ACE-NIC 100 and NT200B01 sNIC.

is at the expense of hardware dependency. Besides, for instance, PacketShader incurs high latency
for batch operations; NBA has data transfer bottleneck in PCIe communication; NetBricks requires
rewriting NFs as it abandons VMs or containers to provide isolation. Some works only support
specific NFs and have difficulty in programming since they are limited by the component capa-
bilities they use, such as ClickNP and SNF. Other works like OpenBox do not provide isolation
among NFs, and Slick fails to share elements across multiple NFs. For those solutions that use
software I/O frameworks, there are also many factors that limit the performance. Specifically, the
switching logic in CockooSwitch is inflexible and CockooSwitch relies on OvS which will harm the
performance, while the same case occurs in Hyper-Switch. The protection mechanism of the host
stack is sacrificed in OpenNetVM. In contrast, the runtime of ClickOS for developing NFs is very
restricted as it does not support a standard Linux environment [154]. For from serial to parallel
acceleration, the most important problem is how to balance the tradeoff between the parallelized
overhead and the performance improvement. Finally, though Metron reduces the inter-core packet
transfers, it uses SNF so it is only applicable to fairly limited service chains.

5 ECOSYSTEM AND APPLICATION OF NFV ACCELERATION IN INDUSTRY
Besides the widespread study in academia, NFV acceleration has also witnessed a great deal of
success in industry. According to the prediction of IHS Markit report [93], the NFV market is
expected to increase at a compound annual growth rate of 42% by 2020, reaching a market scale of
15 billion US dollars. Many solutions and products have been developed by vendors and providers.
There are also a number of industrial projects that have been launched for high-performance
requirements. All of these form an integrated ecosystem of NFV acceleration in industry, proving
the feasibility from academic research to practical applications.

5.1 Emerging Products and Solutions in Industry
For obtaining carrier-grade performance in telecom, Ethernity introduces ACE-NIC 100 [101], a
sNIC that provides up to 100 Gbit Ethernet connectivity. ACE-NIC is built on carrier-grade flow
processor technology called ENET and offers hardware acceleration using programmable FPGA. As
such, this sNIC provides first-class performance for both telecom and enterprise NFV networks by
offloading specific NFs onto an optimized adapter. To reduce the overall CPU overhead, ACE-NIC
provides three types of product features. First, considering that DPDK requires dedicated CPU cores
to process flows, ACE-NIC 100 can offload the DPDK applications onto the NIC, thus improving
the quality of experience for NFs. Second, ACE-NIC offers security acceleration via offloading
IPSec and implements end-to-end encryption for security purpose, while the offload functionalities
provided by traditional NICs are still reserved. Third, to manage VM traffic efficiently, ACE-NIC
also offloads encapsulation or decapsulation of overlay network traffic to the sNIC. Beyond that,
Napatech launches its product called NT200B01 [99], a 2-port 100G sNIC specially designed for NFV.
By exploiting the programmability and reconfiguration of FPGAs, NT200B01 serves as a common
hardware platform that supports various acceleration solutions, while extending the lifetime of
the sNIC and supporting on-the-fly configuration. It is designed to support multiple data rates
such as 4×10 Gbps and 2×100 Gbps. This allows the same sNIC to be used in different locations
in the network. Compared to the software-only implementation, NT200B01 achieves 10 times
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Network 
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Fig. 5. An illustration of the enhanced vSwitch within the carrier-grade server for communication.

higher throughput and 20 times lower latency. NT200B01 can be applied to multiple virtualization
scenarios, including virtual switch acceleration, hardware offloading and VM-to-VM monitoring.
The product photos of both sNICs are shown in Figure 4.

In addition, Barefoot Tofino [11] is a new-generation, P4-based, and end-user programmable
Ethernet switch, which can run up to speeds of 6.5 Tbit/s. Tofino is built on a protocol-independent
switch architecture (PISA), where its forwarding logic depends on the P4 program during runtime.
Since Tofino does not bake the program into the chip, it can handle different protocols by simply
adding the logic to the P4 program. Jin et al. [65] present NetChain, a new approach that uses this
kind of emerging, flexible and high-performance programmable switch (i.e., Barefoot Tofino switch)
to provide scale-free sub-RTT (round-trip time) coordination in datacenters. As compared with
current solutions like NetBricks [108] which can process tens of millions of packets per second,
NetChain implemented with four Barefoot Tofino switches can process several billion packets per
second, which lights the way to use Tofino switches for NFV acceleration.
Since 2014, Wind River has made a breakthrough in accelerating vSwitch optimized for NFV.

Compared to standard OvS with no hardware acceleration, Wind River accelerated vSwitch delivers
20 times the performance, in terms of 12 Mpps to guest VMs with only two Intel Xeon processor
cores at 2.9 GHz. As shown in Figure 5, the enhanced vSwitch resides on the Wind River carrier-
grade server, which serves as an excellent platform for running software NFs [117]. The vSwitch is
scalable since it supports a wide range of guest OSes (e.g., Linux distributions, Windows) running
in the VMs, while supporting fast convergence during live VM migrations. In commercial use, the
platform makes it possible to deliver six 9s reliability for telecom networks.

At Mobile World Congress (MWC) 2018 held in Shanghai, some companies such as Lenovo and
China Mobile jointly showcase their accelerator-based cloud-RAN (radio access network) solution
[85]. Cloud-RAN can accelerate packet processing with various hardware and totally decouple
software from hardware. To further drive the virtualization and cloudification of mobile base stations
and finally make the equipment ecosystem open, cloud-RAN is designed with programmable
hardware and uniform interfaces with the help of Lenovo ThinkCloud Accelerator solution and
Napatech sNICs. ThinkCloud contains carrier-grade platform software, x86 servers and switches,
while Napatech sNICs offers powerful computing performance with Xilinx FPGA silicon. This
solves many issues in current acceleration solutions, including customized function designs and
non-uniform interfaces. With cloud-RAN, China Mobile together with many industry partners
takes a valuable step towards general-purpose acceleration solution in NFV. In the near future, the
five companies aim to further improve the performance with optimized solutions. Together with
Lenovo and Certusnet, Intel also releases its FPGA-based solution in MWC. As early as 2015, Intel
acquired Altera Corporation with 16.7 billion dollars since Intel realized the advantage of FPGA
compared to NPU and GPU long before. For achieving CPU-FPGA heterogeneous computing, Intel
wishes to integrate its Xeon server with FPGA, thus building the end-to-end NFV ecosystem. Based
on Intel FPGA, Certusnet pushes out a series of virtual BRAS (vBRAS) solutions, including vBRAS
IPv4, IPv6 and hardware acceleration solutions.
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Table 6. Representative projects for data plan acceleration.

Project Begin Time Organization Description

ODP 10/2013 Linaro Network
Group

A collection of APIs designed for data plane on
different platforms

Rocket 09/2018 OPNFV NFV solutions for hardware acceleration and
API design for accelerators

FD.io 02/2016 Linux Foundation A collection of several sub-projects and libraries
for flexible and scalable network and storage

FDS 03/2016 OPNFV NFV solution stacks for fast and flexible net-
working

XDP 03/2016 Linux Foundation A high-performance and flexible network data
path

5.2 Popular Projects Established for NFV Acceleration
There are also a number of projects that have been launched in industry. A list of representative
projects is presented in Table 6.

Specifically, OpenDataPlane (ODP) [49] separates its APIs from the underlying hardware archi-
tecture, and not only supports pure software implementations, but can also exploit underlying
hardware features. ODP provides a set of APIs for application portability across a range of net-
working platforms that offer various types of hardware acceleration. Rocket [105] is proposed to
provide various solutions when hardware accelerators are applied in the NFV architecture. It takes
many accelerator-specific factors into account, such as price, power consumption and achievable
performance of a certain accelerator type. In particular, Rocket focuses on the design of common
APIs between NF and NFV infrastructure, with which NFs could employ the accelerators to satisfy
the urgent needs of performance and power regardless of the NF vendors. Fast Data Stacks (FDS)
[25] provides a user-space I/O framework with a modular design and high extensibility that enable
developing I/O services rapidly with high throughput, low latency and resource efficiency. Both
Rocket and FDS projects are within the community of Open Platform for NFV (OPNFV) [37].
FDS also creates and composes a set of scenarios which include the virtual forwarder supplied
by Fast Data - Input/Output (FD.io) project [32]. Its main feature is to take advantage of CPU
optimizations such as vector instructions and direct interactions between I/O and CPU, so as to
deliver best-in-class packet processing performance. As part of the IO Visor Project, XDP [138] still
achieves bare metal packet processing speed without bypassing the kernel. Meanwhile, the fast
data path requires no modifications to the kernel and works well in cooperation with the network
stack.

Note that NFV acceleration is also on the agenda in the open-source community of Open Network
Automation Platform (ONAP) [104], where the initiators present the motivation of NFV acceleration,
state important problems such as acceleration requirements, and call for some proposals.

6 GAP ANALYSIS AND FUTURE TRENDS
Despite the rapid development of NFV, network operators still encounter many obstacles towards
large-scale NF deployments. Since the benefits of higher performance often come with considerable
compromises, many approaches still face limitations when moving to real scenarios. Achieving
high performance for NFV applications will continue to be a hot research topic in both academia
and industry. We next identify some promising methods to improve current solutions and point
out directions that have not been comprehensively explored.

6.1 Acceleration Hardware and CPU Co-design
NFV promises to reduce capital expenditures (CAPEX) by using commodity servers instead of
dedicated hardware. However, the basic principle of hardware acceleration goes against this benefit
commitment. Without proper acceleration, the performance gap between virtualized NF and
dedicated hardware (e.g., the example of gateways in Section 1) can be up to 8 times. Despite
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this fact, the overall cost efficiency achieved is not very impressive since the price of acceleration
hardware is much higher than the COTS servers. According to the statistics, hardware acceleration
makes sense only when there is a performance improvement of more than 60%. CAPEX saves 15%
when hardware acceleration increases by 100%, and the overall total cost of ownership savings is
only 9%.
To solve such a contradiction, joint acceleration hardware and CPU co-design for reducing the

hardware usage while achieving a similar performance is one of the appealing solutions. Instead
of running NFs entirely on hardware, the co-design solution only offloads the required parts (e.g.,
compute-intensive) to the acceleration hardware, while the remaining parts are still running on the
CPU. In this way, the hardware not only has more space for holding accelerator modules, but also
makes the NFs to flexibly use the accelerator modules on demand. Meanwhile, similar performance
can be achieved compared to hardware-only solutions.

The co-design of acceleration hardware and CPU is less to be explored so far since we find that
only DHL and UNO are such solutions to the best of our knowledge. Moreover, there still exist
many problems such as how to intelligently determine which parts to offload to the hardware for
various NFs, how to efficiently schedule the hardware and CPU resources for load balancing and
how to rapidly move the data between the CPU and hardware.

6.2 NF Performance Benchmarking
Benchmarking NF performance plays a key role in the smooth transition to NFV in that it enables
test-before-deploy opportunities before large-scale deployments. In practical NF deployment, the
NFV orchestration tools need to set up and configure the virtualization environment in advance
based on the available NF profiles, for NF performance optimization [19]. Traditional methods
for both data plane and control plane are applicable for NF benchmarking, but are expensive and
not sufficient. In the NFV paradigm, multiple NFs from different vendors can be provisioned on
the same compute node, forming a shared, multi-vendor environment. As a result, identifying the
performance bottlenecks of those NFs becomes a tremendous challenge since the bottlenecks may
occur at any stage during the workflow of NF processing, as we have discussed in Section 2.
Recently, a framework called VBaaS [121, 122] is proposed, which indicates the need for NF

benchmarking in order to support orchestration decisions. However, it is far from straightforward
to provide predictable performance for NFs in the virtualized environment. Current test solutions
on the market either focus on self-generated workloads or collect the NFV infrastructure resource
utilization statistics with an inaccurate understanding of NF profiles. Furthermore, adversarial work-
loads are required by accelerated NFV platforms, which aim to test and optimize the performance
of NFs, as the tool introduced in CASTAN [110]. CASTAN has already served as a good example of
NF performance benchmarking using synthesized workloads, however, more studies are necessary
in this regard, especially using real user workloads. Actually, there is still no unified approach since
the vendors only concentrate on their respective technologies and NF implementations.

6.3 Acceleration of Service Chains at Higher Layers
Existing NFV frameworks largely focus on L2/L3 processing, which relies on a packet-centric
model to steer packets through service chains. However, complex NFs are more than simply packet
processing but also have additional functionalities. For instance, at the transport layer, the flows
through an IDS require full bytestream reconstruction, while a web proxy needs complete TCP
endpoint termination [92]. This requires higher levels of the protocol stacks to process those
NFs. To accelerate the stack processing of NFs in a chain, redundant TCP processing should be
avoided, since current high-performance user-space TCP stacks (e.g., mTCP [62], mOS [60]) can
only be individually used by each NF in the chain. Otherwise, the high cost of the redundant stack
processing would inevitably harm the processing latency for a service chain.

Although the consolidation and customization of stack processing and higher level event commu-
nication interfaces have been proposed in Microboxes (see Section 4.1.3), the acceleration of service
chains at higher layers is still in the early stage due to the fact that: most of existing frameworks
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Fig. 6. An illustration of the Acceleration Abstraction Layer that enables various acceleration options used by
multiple NFs, independent of the underlying accelerators.

focus on speeding up the processing of monolithic NFs rather than service chains, even in high-
performance user-space protocol stacks. The modular design for the event-based communication
mechanisms in Microboxes could be a good way forward, but further investigation in developing
valuable high-performance frameworks is needed in order to ensure large NF deployments at L4
and the above. Furthermore, many advisable ideas in accelerating service chains at L2/L3, such as
NFP and Parabox, can be borrowed in accelerating higher level service chains.

6.4 Standardization of NFV Acceleration
With the emerging of various acceleration solutions, there is an urgent demand for network
operators to get easy access to these solutions. However, most of the vendors push out their
respective acceleration solutions heavily based on their own business and advantages. Consequently,
there is no uniform standard to manage these solutions and no unified interface for the upper layer
network element to use, which are unacceptable to the network operators.
To solve the problems above, a new generation solution that exposes a common interface for

the operators to exploit the acceleration capabilities may be the future evolution. This interface is
generally called as an acceleration abstraction layer (AAL), which is independent of the underlying
acceleration entities. Figure 6 illustrates such an interface. The AAL hides the implementation
complexities that are depending on specific acceleration methods, while providing a common
interface to the independent NFs. In general, the AAL is a normal feature of OSes and can be
implemented with general driver models or hardware-specific drivers [44], by defining a standard
set of APIs to leverage the acceleration capabilities.
Fortunately, the standardization and open source projects in the field of NFV acceleration are

in good progress. European Telecommunication Standards Institute (ETSI) has released a series
of IFA specifications starting in 2015, which cover many aspects for NFV acceleration, including
NF interfaces specification [46, 48] and accelerator resource management specification [45, 47].
Specification [44] defines the information models and interfaces for NFV acceleration, along
with some use cases. In particular, [46] defines and advocates abstracted models for different NF
implementations, such as tightly-coupled software and hardware, and loosely-coupled software, in
order to leverage accelerators in an implementation-independent way. Furthermore, the proposals
in [46] also consider the diversity of the execution environments, acceleration frameworks or
libraries and the virtualization environment. In addition, OpenStack [26] community also sets
up Cyborg project [55], which intends to provide a general-purpose management platform that
includes a variety of acceleration alternatives (e.g., NP, GPU, FPGA and DPDK). Cyborg keeps pace
with the ETSI standards and releases its first version. The standardization of NFV needs to continue
to advance in order to make NFV acceleration feasible.
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6.5 Resource Scheduling and Isolation for NFV Acceleration
NFV platforms support flexible resource scheduling and scaling to satisfy the dynamically changing
workload of NFs, thus how to efficiently provision resources while providing necessary performance
isolation will severely affect the performance. Without proper scheduling/isolation of resources,
current NFV acceleration techniques will suffer from sub-optimal resource utilization and un-
wanted resource contention among competing NF instances. Fortunately, some existing works have
investigated this important aspect.

For example, RTNF [3] is a scalable, online resource allocation and scheduling framework, which
can satisfy certain latency requirements. RTNF is designed with an efficient consolidation approach
and flexible timing interfaces, which can construct SFCs from complex directed acyclic graph (DAG)
based applications with optimized resource allocation at runtime. NFVnice [81] is proposed as a
user-space, fair and dynamic NFV resource allocation platform, which can efficiently schedule and
manage NFs for SFCs. NFVnice shows a good advantage in reducing wasted workload by using
backpressure to effectively reduce previous NF’s load in an SFC and carefully adjusting scheduler
weights. In this way, NFVnice can largely reduce packet loss rate and improve throughput. NFVnice
also provides performance isolation, which can improve the throughput of TCP flows from 30 Mbps
to 4 Gbps without decreasing the throughput of UDP flows. However, NFVnice adopts poll-mode
NF scheduling, which requires modifications to NFs by making them compatible with specific
schedulers. To deal with the issue of assigning poll-mode NFs to shared CPU cores, UNiS [6] is
proposed as a non-intrusive and user-space NF scheduler with workflow awareness, which can
assign the maximal number of NFs to the same CPU core, without degrading the high performance
for processing packets. Specifically, UNiS works in user space with no need to modify the kernel or
implement NFs with specific scheduling logic. Thus, poll-mode NFs are regarded as black boxes in
UNiS, while the processing order of an SFC is considered when scheduling NFs.
As we stated in Section 2.2, container-based NFV platforms have emerged to provide more

efficient NF management and resource allocation (e.g., NFVnice [81] allows NFs to be deployed in
Docker containers). However, providing a high level of isolation is more difficult in a container-
based NFV platform than in a VM-based one, because the underlying operating system is shared
by all containers built on it. To ensure high-level performance isolation, Iron [75] is proposed
to monitor, charge and enforce CPU usage for processing network traffic while ensuring this
processing cannot adversely interfere with co-located containers. Specifically, containers in Iron
can be appropriately credited or charged for network packet processing because of its efficient
charging strategy, which is integrated with the Linux cgroup scheduler. Besides, Iron’s dropping
mechanism can cost-efficiently eliminate the effect of a noisy neighbor that has fully consumed
its resources. Moreover, Zeng et al. [148] have disclosed that NF consolidation on a single server
will cause performance degradation due to the hardware resource competition. They call it NF
interference, which will degrade the throughput from 12.36% to 50.30% as more NFs are consolidated
on the same server. Thus, when making NF scheduling and resource allocation decisions, it is also
worth considering this important characteristic to ensure high performance. Zhang et al. [150]
apply a supply-demand model to capture the NF interference when making NF placement decisions
in service-customized 5G network slices. The joint NF placement and resource scheduling problem
has also been studied in some other state-of-the-art works. For example, NFVdeep [142] utilizes
deep reinforcement learning (DRL) approach to achieve online SFC deployment and Zhang et
al. [151] jointly optimize the NF chain placement and request scheduling by modeling the NFV
network as an open Jackson network. Besides, there are still some valuable issues requiring constant
concern and further study when designing and implementing resource scheduling and isolation for
NFV acceleration, such as how to dynamically scale NFs and SFCs to cope with traffic fluctuations
(e.g., Fei et al. [34] investigate the adaptive NF scaling and flow routing with proactive demand
prediction and FlexNFV [33] is proposed for timely and flexible SFC scaling), how to design an
effective load balancing mechanism (e.g., Wang et al. [139] propose a multi-resource load balancing
mechanism with special consideration on the most stressed resource and Fei et al. [143] present
a framework for joint cost-efficient SFC deployment and load balancing of multiple resources in
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geo-distributed central offices), how to improve the resource utilization efficiency (e.g., Jin et al. [64]
study the efficient resource reuse at network edge and Finedge [89] design a dynamic, fine-grained
and cost-efficient resource management for NFV network) and even how to consider the energy
efficiency of NF when scheduling resources (e.g., Xu et al. [145] provide a measurement study on
the power efficiency of software data planes, virtual I/O and NFs).

6.6 Scalability of NFV Acceleration Solution
Scalability is a key factor that an acceleration solution needs to consider. The scalability is reflected
in many aspects. First, the used acceleration techniques require minor or even no modifications to
OSes, virtual switches, hypervisors and NICs. Similarly, rewriting NFs in order to adapt to a certain
high-performance framework is not allowed, and there is no necessity to implement new modules
when introducing new NF functionality. The accelerated NFV system had better run in a standard
development environment (e.g., Linux and FreeBSD). Second, the acceleration solution must be
designed to support processors, NICs and hardware platforms from different vendors (e.g., Intel
x86, IBM POWER). This makes it possible for the solution to be easily integrated into different
platforms. Third, the solution is expected to offer the capabilities to launch and migrate NFs across
multiple servers. This requires higher scalability requirements.
To achieve this, significant efforts have to be put into developing efficient tools for building

and running NFs. These tools should allow NFV developers to use high-level abstractions, while
supporting both rapid development and high performance. Besides, proof of concept associated
with a new acceleration method should be conducted before large-scale NF developments, in order
to validate its scalability. Many existing projects described in Section 5.2 can be used for reference
in developing a scalable NFV acceleration solution.

6.7 Fault Tolerance vs. High-performance NFV Platforms
While exploring efficient NFV acceleration techniques, effective fault tolerance schemes should
also be employed in high-performance NFV platforms. For example, REINFORCE [80] addresses NF
chain resiliency and supports efficient fault detection and NF recovery upon link and server failures.
By separating deterministic and non-deterministic NF processing, REINFORCE can minimize the
performance overhead by adopting a lazy checkpointing mechanism for deterministic packet
processing and a lightweight checkpointing mechanism for non-deterministic processing. Kanizo
et al. [70] also design an optimal resource-constrained NF recovery strategy with performance
guarantees, which mainly deals with the case that only a few NFs malfunction at the same time.
Sherry et al. [127] state that existing NFV platforms implement careful engineering to avoid

failures and backup deployment for quick recovery. However, these mechanisms are either not
quick enough or can not provide effective recovery for stateful NFs. Thus, they propose FTMB [127]
(i.e., Fault-Tolerant MiddleBox) for rollback recovery, which employs ordered logging with restored
state of NF replica during replay and parallel release for low overhead fault tolerance. To break
the tight couple of state and processing, StatelessNF [68] emerges as a new NFV architecture to
decouple NF into stateless processing components while maintaining the state of NF in in-memory
databases (e.g., in RAMCloud). To structure the stateless NFs, StatelessNF uses high-performance
DPDK-enabled pipelines for efficient network I/O, an optimized data store interface for quick
access and lightweight Docker containers for flexible service provision. In order to achieve greater
elasticity and failure resiliency, StatelessNF also supports instantaneous development of a new NF
instance upon failure with zero-cost failure detection and flow re-direction. However, database can
be a bottleneck for some NFs in StatelessNF.

In contrast to previous NFV recovery strategies, which store the NF state externally or snapshot
the NF state at specific checkpoints, FTvNF [53] can effectively amortize the cost of state tracking
for multiple NFs, especially for SFCs. Specifically, FTvNF can largely reduce the cost in failure-free
operations where a master instance and a slave instance of a protected NF are deployed. When a
failure happens, the master instance is recovering while the slave handles the traffic. Nevertheless,
how to balance the recovery efficiency (i.e., maintain high performance) and the overhead of fault
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tolerance, and how to rapidly detect the failures, by means of active probing or passive observation,
are still issues worthy of further study.

6.8 5G and NFV Acceleration
5G is the next generation of mobile network beyond the 4G long term evolution mobile networks
today. Compared to 4G, 5G has more stringent performance requirements. That is, the primary
goals for 5G are to improve the system capacity by 1,00 times, increase the throughput by 100
times, support 100 times more devices for connectivity, and reduce latency from 5 ms to 1 ms. As
such, NFV acceleration is the foundation to deliver 5G in enhancing the viability of 5G radio access
networks’ functionality and architecture.

NFV overcomes some challenges of 5G when NFs are implemented by software components, but
faces new problems. Researchers have put some efforts into investigating the problems after the in-
tegration of NFV and 5G. While Abdelwahab et al. [2] focus on addressing the networking problems
by using a network overlay approach, and Agarwal et al. [4] seek to make optimal decisions when
concerning the placement of NFs and the CPU allocation in a host, few researchers have studied
how to jointly consider the challenges in NFV-enabled 5G networks with acceleration techniques
introduced. In the near future, we will surely witness the involvement of NFV acceleration in the
next-generation mobile network or even being a part of it, to jointly offer high-performance mobile
services to end users.

7 SUMMARY AND CONCLUSION
The main obstacle for boosting NF deployments on a large scale is that the performance provided by
traditional approaches is a poor match for carrier networks. To remedy this mismatch, considerable
efforts have been paid to improve the performance of NFs or service chains. Due to numerous
performance bottlenecks inherent in a virtualized system, designing and implementing such a
high-performance platform faces many challenges. Many research works have resorted to various
acceleration approaches and targeted on many different acceleration purposes.
In this article, we gave a close examination on how the performance bottlenecks occur in NFV

from a systematic view and identified the key challenges in achieving high performance. We
surveyed the development of acceleration techniques in the context of NFV, including common
software frameworks, switches/routers and popular hardware accelerators. We presented a new
taxonomy by classifying the surveyed works into four categories according to the acceleration
approaches. Within the taxonomy, we reviewed all the surveyed works, and then compared these
solutions to identify their respective advantages and disadvantages. We also discussed the emerging
products, solutions and popular projects in industry. Finally, we analyzed the gap that exists in
current approaches and highlighted some promising research trends in the future.
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