AsyFunc: A High-Performance and Resource-Efficient Serverless
Inference System via Asymmetric Functions

Anonymous Author(s)
Submission Id: #181

ABSTRACT

Recent advances in deep learning (DL) have spawned various in-
telligent cloud services with well-trained DL models. Nevertheless,
it is nontrivial to maintain the desired end-to-end latency under
bursty workloads, raising critical challenges on high-performance
while resource-efficient inference services. To handle burstiness,
some inference services have migrated to the serverless paradigm
for its rapid elasticity. However, they neglect the impact of the
time-consuming and resource-hungry model-loading process when
scaling out function instances, leading to considerable resource
inefficiency for maintaining high performance under burstiness.

To address the issue, we open up the black box of DL models and
find an interesting phenomenon that the sensitivity of each layer to
the computing resources is mostly anti-correlated with its memory
resource usage. Motivated by this, we propose asymmetric func-
tions, where the original Body Function still loads a complete model
to meet stable demands, while the proposed lightweight Shadow
Function only loads a portion of resource-sensitive layers to deal
with sudden demands effortlessly. By parallelizing computations on
resource-sensitive layers, the surging demand can be well satisfied,
though the rest layers are performed serially in Body Functions
only. We implement asymmetric functions on top of Kubernetes and
build a high-performance and resource-efficient inference serving
system named AsyFunc with a new auto-scaling and scheduling en-
gine. Experimental results driven by production traces indicate that
compared to the state-of-the-art, AsyFunc improves resource effi-
ciency by 23.4% while providing consistent performance guarantees
under burstiness.

KEYWORDS

serverless computing, real-time inference serving, request bursti-
ness, resource efficiency

ACM Reference Format:

Anonymous Author(s). 2023. AsyFunc: A High-Performance and Resource-
Efficient Serverless Inference System via Asymmetric Functions. In Proceed-
ings of 14th ACM Symposium on Cloud Computing (SoCC ’23). ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Deep Learning (DL) has enabled a variety of intelligent applications
in recent years, from virtual assistants to smart traffic management.
According to data statistics from China’s largest local life service
platform, millions of queries are processed every minute using DL
models [62]. On Facebook alone, more than 200 trillion inference
queries are processed daily [34]. Typically, these models go through
two phases for each application scenario: offline training to achieve
the desired accuracy by iteratively tuning the model parameters,
and online inference to perform user-facing tasks in real-time. In
contrast to training, model inference imposes strict requirements on

real-time performance, especially the end-to-end latency specified
by service level objectives (SLOs) [10, 64]. For example, 98% of
user requests should complete within 200 ms, and SLO violations
result in a poor user experience and potentially lower business
revenue [64]. A recent report shows that a 100 ms increase in
latency can lead to a 1% decrease in revenue [23].

However, the ubiquitous bursts of user requests make it difficult
to maintain desired SLOs [2, 41] as more resources are suddenly
requested but are not available at the moment (e.g., occupied by
another service or idle but not initialized). A common practice to
deal with bursts is over-provisioning, i.e., preparing sufficient re-
sources in advance, which would result in a considerable waste of
resources during valley periods [61]. The problem posed by bursts
is exacerbated in an inference platform because DL models are
generally resource-hungry. For example, the GPT-3 model [7] con-
sumes 325 GB of memory for storing its parameters, as well as
necessary computing resources to run the inference, meaning that
prohibitive amounts of resources need to be allocated in advance.
This overhead increases dramatically as more DL models are served
simultaneously [27] and as the models grow larger over time, espe-
cially with the recent emergence of large language models such as
ChatGPT [9]. Therefore, a question emerges about providing high-
performance yet resource-efficient inference services despite bursts.

There have already been some attempts at this question. Amazon
SageMaker [4] is a well-known inference platform that uses virtual
machines (VMs) to execute inferences. Despite low operational
costs, the bulky VMs make scaling too slow to meet real-time re-
quirements during sudden spikes in requests. More recently, server-
less computing offers opportunities for dealing with bursts [59]. For
example, MArk [64] combines sparse VMs and elastic serverless
functions! for model serving under bursts, demonstrating the po-
tential benefits of serverless. Industry products such as Amazon
Alexa [3] and Netflix content delivery [45], have also gradually
deployed their services on serverless platforms, which can respond
to fluctuating workload levels in a timely and cost-effective manner
due to the rapid elasticity and fine-grained billing that serverless
offers [2, 27, 62].

Despite the prominent advantage of serverless in handling bursts,
we note that the unavoidable model-loading process when creating
new function instances significantly limits the benefits of auto-
scaling for the following two reasons. (1) High model-loading la-
tency invalidates the reactive on-demand scaling policy. According
to our measurements, the model-loading latency can be 10 to 100
times higher than the inference latency, making real-time services
impossible during bursts. (2) High resource requirements prevent the
proactive prediction-based scaling policy. Since a DL model can con-
sume hundreds to thousands of megabytes of memory, prewarming

!The serverless function contains a piece of user code and can be instantiated as an
individual execution unit.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

a sufficient number of function instances in advance can result in
significant resource consumption. Given the unpredictability of fu-
ture requests, pre-warmed instances typically far surpass the actual
demands [46]. These issues ultimately preclude high performance
while resource-efficient inference services under bursts.

By addressing the scaling problem as a consequence of the time-
consuming and resource-hungry model-loading process, we aim to
arm serverless functions with resource-efficient scaling capabilities
while maintaining consistent performance. Rather than viewing
the entire DL model as a complete black box, as has been the case
in previous works [2, 27, 62], we identify unique opportunities that
arise from the heterogeneous behavior of the internal layers. In
particular, we find that the sensitivity of each layer to computing
resources is almost negatively correlated with its parameter size, as
shown later in Figure 2. This implies that loading a small number of
resource-sensitive layers can achieve comparable inference latency
as loading a complete model, but significantly reduces the overhead
of loading the model when provisioning a new instance. For exam-
ple, for one of the latest object detection models YOLOv8x [44], if
the top 10% most resource-sensitive layers get loaded, the model-
loading time and memory consumption can be reduced from 100 ms
and 131 MB to 11 ms and 6 MB, respectively, while the inference
latency can remain almost unchanged by allocating slightly more
CPU cores temporarily.

Driven by the observation on the completeness of DL models,
we propose a fine-grained layer-level scaling policy in combination
with the existing coarse-grained model-level scaling policy. The
former scales out functions with a portion of resource-sensitive
layers which we call Shadow Function, and the latter scales out
functions still with a complete model which we call Body Function.
Body Function basically loads a complete model to maintain con-
sistent performance under stable demands, and adjusts periodically
to long-term fluctuations in workload levels (e.g., 30 s). In compar-
ison, Shadow Function loads only a portion of resource-sensitive
layers so that it can respond quickly to sudden demands. When
a burst arises, it will be too slow to provision an additional Body
Function, but the Shadow Function can be provisioned in a timely
manner. By pairing an existing Body Function with a new “asym-
metric” Shadow Function, they can perform inference executions
on the resource-sensitive layers together, while only the Body Func-
tion is still responsible for the rest layers, achieving high resource
efficiency to maintain consistent performance at bursts.

To fulfill Asymmetric Functions, we develop a serverless-oriented
inference seﬁg system called AsyFunc. Specifically, we make the
following four contributions:

o We investigate the scaling problem of current serverless infer-
ence platforms caused by the time-consuming and resource-
hungry model-loading process, and propose the key concept
of asymmetric functions with different levels of model com-
pleteness (i.e., Body Function vs. Shadow Function) to solve
this problem.

o We develop a heuristic algorithm for the model-level scaling
(MLS) that adapts periodically and a priority-based heuristic
algorithm for the layer-level scaling (LLS) that adapts on
demand. Both of them aim to maximize the resource effi-
ciency without hurting the performance. To make full use of

Anon. Submission Id: #181

the asymmetric functions, we devise an adaptive scheduling
scheme to dispatch requests in real time.

e To enable fine-grained scaling at the layer level, we imple-
ment a high-performance and resource-efficient inference
serving system AsyFunc on top of Kubernetes. For efficient
coordination between Body and Shadow Functions during
collaborative inference executions, we establish an efficient
communication and synchronization mechanism that im-
poses negligible overhead on inference performance and
resource consumption.

e We conduct extensive experiments to evaluate the perfor-
mance of AsyFunc. Based on real-world traces, the evalua-
tion results demonstrate the effectiveness of AsyFunc, which
improves resource efficiency by up to 23.4% over the state-
of-the-art and keeps the SLO violation rate at a low level
despite the bursts.

The rest of the paper is organized as follows. In Section 2, we
present the background of serverless inference and analyze the op-
portunities and challenges of layer-level scaling, which motivates
the design of AsyFunc in Section 3. To achieve high-performance
and resource-efficient inference serving, we present well-designed
model-level and layer-level scaling policies in Section 4. For real-
time inference serving, we develop an adaptive scheduling scheme
and an efficient coordination mechanism in Section 5. We imple-
ment AsyFunc on top of Kubernetes in Section 6 and perform
extensive experiments to evaluate AsyFunc in Section 7. Finally, we
discuss related work in Section 8 and present concluding remarks
in Section 9.

2 BACKGROUND AND MOTIVATION

In this section, we first analyze the scaling issue of existing server-
less inference platforms. Then, we illustrate the layer heterogeneity
of DL models. Finally, we discuss the opportunities and challenges
of layer-level scaling.

2.1 Scaling Issue of Serverless Inference

DL models consist of different types of neural network layers with
different parameters (a.k.a. weights) [42], such as convolutional lay-
ers, fully connected layers, and pooling layers. The layers and their
connections form a computationally directed acyclic graph (DAG),
and inference executions are performed on these layers sequentially
along the DAG. The DL models have recently achieved impressive
performance in many areas, from image classification [21, 52] to
natural language processing [14]. Major cloud providers, such as
Amazon and Alibaba, have deployed DL models to provide inference
services as a key part of their applications [43, 57]. However, online
inference services are usually both latency-critical and resource-
hungry, which leads to an inevitable trade-off between performance
and resource efficiency, especially given the significant burstiness
observed in the inference requests from users [6, 17, 29].
Serverless computing is considered to be a promising choice
for handling bursty workloads due to its rapid elasticity and fine-
grained billing [30, 36]. Therefore, model inference based on server-
less platforms (i.e., serverless inference) has received widespread
attention [2, 27, 62, 64]. In serverless inference, each DL model
is deployed separately in a function instance (e.g., Docker [35],

AsyFunc: A High-Performance and Resource-Efficient Serverless Inference System via Asymmetric Functions

120

RPS
A ®
o o

=

OPT oD —= vV ---- 15-lv

of provisioned
instances

OO0 W o W NOo

w b
o

oD —= vV ---- 1.5-lV

SLO vio.
rate (%)
= N
o o

o

0 4 8 12 16 20 24
Hour (every 5 minutes)

Figure 1: RPS over time, and the corresponding number of
provisioned instances and SLO violation rate under different
scaling policies. Existing policies involve inevitable trade-
off's between SLO satisfaction and resource efficiency.

Firecracker [1]) that scales out/in as workload levels grow/drop.
It is worth noting that before providing inference services, the
function instance needs to be created first and then complete the
model-loading process, i.e., loading the model file into the mem-
ory and initializing the model, which is very time-consuming. To
maintain low inference latency in case of bursts, one common
remedy is prewarming the instances and pre-loading the model
beforehand [12, 16]. However, prewarming a sufficient number of
instances for each DL model can cause a huge waste of resources,
especially when there are many different models and under signifi-
cant workload fluctuation. A recent study [37] proposes a remedy
that saves resources by only prewarming the instances without
instantiating any model and thus can be shared by all models. In
this way, the corresponding model will be loaded into the instance
on demand. However, we notice that the time for loading the model
is still much longer than that for performing an inference execution
(e.g., the gap is 15x for the InceptionV3 model), which disables
persistent real-time inference serving.

We attribute the above scaling problem to the time-consuming
and resource-hungry behavior of the DL model-loading process. We
conduct an experiment to verify this problem with a real-world
trace from Twitter [54]. We select three classical scaling policies,
namely on-demand scaling (OD), prediction-based scaling with the
last value (LV) [8], and prediction-based scaling by multiplying
the last value by a factor k (k-LV, k is 1.5 here), and also present
the optimal scaling policy (OPT) that assumes zero model-loading
latency. The requests per second (RPS) during a day, the number
of provisioned instances? and the SLO violation rate are plotted in
Figure 1, where we do not present the SLO violation rate of OPT
since it is always zero.

Two conclusions can be summarized from this experiment: (1) The
long model-loading process is likely to cause SLO violations if we
scale out instances conservatively (the average SLO violation rates
of the OD and LV are 10.52% and 5.46%, respectively); (2) The high
demand for computing and storing will lead to a waste of resources

2We refer to function instances that pre-load DL models as provisioned instances.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

o

—— Latency increase of each layer

w o o
o

Latency
increase (ms)
o

o

Parameter size of each layer

Parameter
size (MiB)
=
o

—— Loading time of each layer

Loading
time (ms)
w

0 10 20 30 40 50 60 70 80
Layer index

Figure 2: The latency increase of each layer when the batch
size increases, and the parameter size and loading time of
each layer in the EfficientNet-b5 model. Surprisingly enough,
the latency increase is almost negatively correlated with the
parameter size and the layer’s loading time.

== & | — bs3
o | --~ bs4
2101l —:= bs5
o g_.) !
£e
—— bs3 N>
-~~~ bs4 5
—-- bs5 8 | T
0.0 — —
0 30 60 90 120 0 50 100

Latency increase (ms) Size of offloaded layers (%)

Figure 3: The CDF of latency
increase of each layer when
the batch size increases from
2 to 3,4, and 5.

Figure 4: The increase in in-
ference latency when load-
ing different percentages of
layers into the Shadow Func-
tion.

if we scale out instances aggressively, where many instances are
provisioned but actually unused (the average number of created
instances of the k-LV is 5, about 1.3X of the actual demand as indi-
cated by the OPT). We notice that the contradiction between SLO
satisfaction and resource efficiency arises from the existing
coarse-grained model-level scaling that always loads the whole
DL model into the new instances. Thus, we wonder whether we can
reduce unnecessary resources without incurring perceptible SLO
violations by opening the black box of DL models and studying its
internal layers.

2.2 Heterogeneous Behavior of Layers

To improve the scaling efficiency, we identify the opportunity pro-
vided by the internal layers. It is worth noting that batching is
a useful approach to increase the processing rate by grouping a
number of user requests together, and the batch size denotes this
number of requests. A larger batch size can increase the process-
ing rate but at the expense of latency performance. We measure

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

& Body Function |
O &) (D> Result

Forward Propagation along the DAG

Request |

Figure 5: Illustration of collaboration between Body Func-
tion and Shadow Function in the layer-level scaling. The red
circles denote the resource-sensitive layer and computations
on this layer are partially offloaded to the Shadow Function.

the inference latency increase, the parameter size, and the load-
ing time of each layer inside the EfficientNet-b5 model [53] when
the batch size increases from 2 to 4, as shown in Figure 2. As we
can see, the sensitivity of each layer to the computing resources
varies. Specifically, the inference latency increase is almost
negatively correlated with the layer size, while the model-
loading latency is generally proportional to the layer size®.
That is to say, both the memory consumption and model-loading
latency can be reduced significantly by loading a small number of
resource-sensitive layers into the instances.

We further plot the cumulative distribution function (CDF) of
the latency increase of each layer when the batch size increases
from 2 to 3, 4, and 5, in Figure 3. It is obvious that the latency
increase of most layers is only marginal, while only a few layers
show a high latency increase. For example, when the batch size
doubles to four, although the highest latency increase is 92 ms, the
latency of about 90% layers increases no more than 24 ms, and the
latency of about half of the layers remains almost unchanged (Note
that the inference latency of the whole model is increased from
673 ms to 1571 ms). The above observation motivates the design
of fine-grained layer-level scaling for handling bursts, where only
some of the resource-sensitive layers will be loaded rather than a
complete model.

2.3 Opportunities of the Layer-level Scaling

Opportunities to handle bursts. In existing inference serving
systems, to avoid perceptible latency increase because of a sudden
spike of user requests, the heavy model-level scaling policy re-directs
the additional requests to new instances that load a complete model,
and these instances process their respective requests separately.
Based on the observation explained in Section 2.2, we dig out the
potential benefits of the layer-level scaling policy here. Specifically,
when bursts arise, the layer-level scaling allows prewarmed func-
tion instances to load only a small number of resource-sensitive
layers in a timely manner which we call Shadow Function. During
the inference process, the original function instances loaded with
the complete model which we call Body Function, can offload the
computations from additional requests on these resource-sensitive
layers to the Shadow Function, as illustrated in Figure 5. The two
instances perform computations on these common layers collabo-
ratively and in parallel, and Body Function is also responsible for
computations on the remaining layers. This helps handle sudden
spikes in demand without heavy resource waste or performance
degradation.

3We provide a brief explanation and more proof from other DL models of this anti-
correlation phenomenon in Appendix.

Anon. Submission Id: #181

wn
a
o
Period starts Burst starts Burst ends Period ends
Timeline
(a) The workload level over an adaptation period.
—— Over-provisioning == - On-demand scaling Layer-level scaling

o E High resource waste
°a e I
S e 1
g3
Q

c
]

o

Period Provision Release Period
starts instances instances ends

(0]

o

4 emme—— H lation ra

c
S8
0nis

o — 7 S

k=

>

Period starts Period ends

Timeline

(b) The resource consumption and SLO violation rate over an adaptation period.

Figure 6: Comparison among three scaling policies when
dealing with bursts.

30—=
| —— bs3
201 - --- bs4
- —~ bs5

Increased
output size (MB)

H
o
Ini
rr-’
|
if !
i
)
'

0 10 20 30 40 50 60 70 80
Layer index

1

Figure 7: The increased output size of each layer in the
EfficientNet-b5 model as the batch size increases from 2 to 3,
4, and 5.

Evidence supporting the benefits. Figure 4 shows the increase
in the inference latency when offloading computations on different
percentages of layers, where the layers are sorted in descending
order by the latency increase as the batch size increases unless
otherwise noted. Note that 100% of the offloaded layers indicate that
all the computations from additional requests are offloaded to a new
instance, which is equivalent to the model-level scaling policy. It is
worth noting that the latency increase drops significantly although
computations on only a small portion of layers get offloaded. In
particular, the latency increase is almost zero when calculations on
merely half of the layers get offloaded.

Preliminary experiments. We perform an experiment to com-
pare the performance of the layer-level scaling policy with the
model-level one (including over-provisioning and on-demand scal-
ing) as workload level grows unexpectedly, as shown in Figure 6.
The over-provisioning policy provisions enough instances that pre-
load models in case of sudden request surges, while the on-demand
scaling policy only provisions some instances for stable workloads
(e.g., the most common workload level) and provisions additional
instances when bursts happen. By contrast, although the layer-level

AsyFunc: A High-Performance and Resource-Efficient Serverless Inference System via Asymmetric Functions

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

Offline 3‘359] o —>D o F Shadow Function Capacity
ata oW — |
,<I)—» | — —>{9|T=| Extractor -»{e |im Profiler - = | ____ ~ || = —
Model R it i i
Developer Model Profile L O—f_ epository Control Flow Body Function Capacity
meteC =
: > - |
Online Phase g ava (@ Scaler - l| :
3 ["hme Node g jpg; S !
8 FTT T "‘ Model-level scaling (§4.2) ||~ - Status S e ::ﬂ Shadow Function Shadow Function |
e o | Layer-level scaling (§4.3) | S‘c;”; = P O il O - ® :
E < + Scaling decision 9 decisjon] COO’q’"?for & 7 L 4 O‘ 1
User SLO-specified - @ o—_o anﬁef‘—a‘gs‘ I scyi?r?:;:;itgm(% 3573) l«-+| Body Function Body Function :
Request T o— Scheduler H e%0 0 !
\ Adaptive scheduling (§ 5.1) \ & O 1
Master Node Worker Node

Figure 8: System overview of AsyFunc.

scaling policy also provisions instances only for stable workloads, it
scales rather fast when bursts come by loading only a small number
of resource-sensitive layers. According to our measurements, the
model-loading time can be reduced by one to two orders of mag-
nitude compared to that of loading a complete model. As shown
in Figure 6, the layer-level scaling policy can save resource usage
and waste significantly while keeping a low SLO violation rate,
revealing the great potential of the layer-level scaling policy.

Challenges to address. Despite proving to have great potential
for serverless inference, the layer-level scaling policy faces criti-
cal challenges to facilitating efficient coordination between Body
Function and Shadow Function. Firstly, the offloaded layers of the
DL model and the amount of offloaded requests need to be tuned
dynamically in accordance with request fluctuations, which affects
the inference latency and overall resource efficiency. These two
parameters must be determined at runtime based on the current
instances’ status and actual workload levels. Moreover, offload-
ing partial layers’ computations to another instance causes the
inference process to span both instances, so the output of some
layers needs to be transferred between instances. Figure 7 shows
the size increase of the output data of each layer when the batch
size increases from 2 to 3, 4, and 5. It can be seen that the layers
are heterogeneous in terms of the output data size. Thus, when
deciding on offloaded layers during the layer-level scaling, we need
to consider the output data size as well to reduce the data trans-
fer overhead. Finally, since current serverless platforms are a poor
fit for supporting fine-grained coordination between instances, a
new communication and synchronization mechanism needs to be
devised as a module with minimum overhead.

3 SYSTEM DESIGN

In this section, we present the design of AsyFunc, a serverless
inference system that supports both coarse-grained model-level
scaling and fine-grained layer-level scaling.

3.1 Design Philosophy

To take advantage of the fine-grained layer-level scaling discussed
in Section 2.3, we develop a high-performance and resource-efficient
serverless inference system with a new auto-scaling and schedul-
ing engine. The main idea behind the engine lies in two aspects:
(1) leveraging the Body Function that loads a complete model to

handle stable inference workloads, and (2) leveraging the Shadow
Function that loads a selective percentage of resource-sensitive lay-
ers to handle spiky inference workloads effortlessly. When bursts
arise, the resource-sensitive parts of the DL model can be executed
in a parallel manner using the Shadow Function, while other non-
resource-sensitive parts are executed serially in the Body Function
only. In this way, AsyFunc aims to achieve a good balance between
SLO satisfaction and resource efficiency despite the ubiquitous
bursts of inference requests.

3.2 System Overview

Based on the above design philosophy, we establish AsyFunc. Fig-
ure 8 shows the system overview of AsyFunc with the Extractor,
Profiler, Scaler, Scheduler, and Coordinator as its core components.

In the offline phase, @ after the well-trained DL model is sub-
mitted to the platform, @ the Extractor automatically extracts its
layer information (including the layer type and parameters) and
structure information (i.e., the connections between adjacent lay-
ers). Then, ® the Profiler analyzes the resource sensitivity of each
layer as well as other necessary metadata information. @ Finally,
the layer, structure, and metadata information are stored in the
model repository.

In the online phase, ® after receiving an SLO-specified request
from users through the API Gateway, @ the Scaler on the mas-
ter node collects the inter-arrival time information that will be
used to calculate historical RPS for generating the scaling deci-
sion periodically. The scaling decision includes scaling out/in new
Body Function instances periodically (i.e., the model-level scaling),
and adjusting the maximum supported batch size of existing Body
Function instances at bursts by scaling up/down Shadow Function
instances (i.e., the layer-level scaling). Meanwhile, @ the Scheduler
on the master node is responsible for dispatching the incoming
request to an appropriate Body Function instance on worker nodes.
@ Requests are cached in the waiting queue until they reach the
maximum batch size or timeout. Then, all requests in the queue are
batched together and sent to an instance on worker nodes. ® The
Body Function instance can offload partial layers’ computations
to its paired Shadow Function instance at bursts, and the two in-
stances are coordinated by the Coordinator on the worker node. In
the following, we introduce each module in detail.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

3.3 Extractor & Profiler

As illustrated in Section 2.1, a DL model is composed of various
types of layers that exhibit different behaviors. AsyFunc needs to
extract layer information from model profiles submitted by develop-
ers and analyze the resource sensitivity of every layer. The Extractor
and Profiler modules are responsible for these tasks.

The Extractor first parses the model profile and generates a
profile for each layer as an individual file which contains the layer
name, type, and parameters. In this way, layers can be selectively
loaded as a sub-model into a Shadow Function instance at runtime,
and the instance can perform inference computations only on these
layers. Then, the Extractor reads the DAG structure information,
i.e., connections between layers. With this connection information,
the output data from the previous layer can be correctly passed to
the next layer during an inference execution.

As we find that the resource sensitivity is directly related to the
number of multiply-accumulate operations (MACs) of the layer,
the Profiler first estimates its sensitivity based on the MACs, groups
adjacent layers with similar sensitivity into a layer block, and fil-
ters out layer blocks with low sensitivity or very large memory
consumption. Instead of each individual layer, the layer block as a
whole will be selectively loaded into the Shadow Function to avoid
frequent data transfer during an inference execution. For example,
as shown in Figure 2, the layers numbered 8 to 15 will be merged
into one block and the layer numbered 3 will be treated as another
separate block. Next, the Profiler obtains the metadata information
of each layer block by performing inference executions on these
blocks separately, including the inference latency (I), parameter
size (p), and output data size (d) under different numbers of CPU
cores (c) and batch sizes (b), as a 5-tuple < ¢, b, [, p,d >.

3.4 Scaler

The Scaler is responsible for scaling out/in Body Functions periodi-
cally and scaling up/down Shadow Functions at bursts.

On the one hand, the Scaler estimates the average workload
level during the next period based on historical inter-arrival time
information. When it is expected to rise or decline, the Scaler will
make scaling decisions through model-level scaling. Based on the
model metadata and real-time node & instance status (including the
number of free CPU cores on each node and the number of allocated
CPU cores to each instance), the Scaler decides the configuration of
the Body Function (i.e., # of CPU cores) and which worker node to
accommodate it. On the other hand, when bursts arise unexpectedly
within each period, the Scaler will make scaling decisions through
layer-level scaling. The purpose of the layer-level scaling policy
is to increase the maximum supported batch size of existing Body
Function instances temporarily, by scaling up well-sized Shadow
Function instances for a collaborative inference execution. Based
on the model metadata and the reserved resources on each worker
node, the Scaler decides which worker node to provision the Shadow
Function and which layer blocks to load. The scaling details will be
discussed in Section 4.

Note that the container pool is distributed among worker nodes.
In other words, each worker node reserves one empty container
that can load any layer blocks from any models on demand. In this
way, the Shadow Function can be provisioned quickly by loading

Anon. Submission Id: #181

only the resource-sensitive layers without waiting for creating a
container. Those reserved resources can also make room for other
Body Functions when the remaining resources on that worker
node are insufficient at high workload levels. In Section ??, we will
evaluate the impacts of resource reservation on performance and
resource efficiency.

3.5 Scheduler & Coordinator

Both the Scheduler and Coordinator help realize real-time inference
serving. First, the Scheduler is responsible for scheduling incoming
requests to the best candidate instance, either the Body Function in-
stance only or the Body and Shadow Function instance pair. Specifi-
cally, the Scheduler collects the instance status on all worker nodes,
including # of allocated CPU cores, the maximum supported batch
size, and the instance state (i.e., idle or busy). As requests continue
arriving in the waiting queue, the Scheduler forwards them as a
batch to the best idle Body Function instance. In short, we regard
the instance that achieves the maximum throughput (i.e., the actual
batch size divided by the inference latency) per CPU core as the
best one. The scheduling details will be discussed in Section 5.1.

Second, the Coordinator is responsible for coordinating each in-
stance pair during a collaborative inference execution in three ways:
creating and destroying instances, facilitating efficient data transfer,
and controlling correct synchronization. Note that the Body Func-
tion and its Shadow Function partner would be created on the same
worker node as much as possible to avoid time-consuming cross-
server communication. The coordination details will be discussed
in Section 5.2.

4 FINE-GRAINED SCALING MECHANISM

In this section, we describe in depth the design of model-level
scaling and layer-level scaling in the Scaler.

4.1 Scaling Principle
First, we summarize the following two scaling principles:

(1) The model-level scaling policy for Body Functions aims at
satisfying stable workloads which are represented by the
expected average RPS.

(2) The layer-level scaling policy for Shadow Functions aims at
satisfying spiking workloads which are represented by the
unexpected instantaneous RPS.

Before making the model-level scaling decision periodically, the
Scaler needs to evaluate whether the existing instances can meet
the resource demand under the expected average RPS. Specifically,
since it is Body Function instances that directly serve the user
requests, the Scaler calculates the maximum supported RPS by all
the Body Function instances paired with Shadow Function instances
or not. Suppose there are n Body Function instances distributed
in different worker nodes. For a Body Function instance i, we use
b, té, and tli to represent the batch size, queuing time, and the
inference latency of the instance, respectively. As th approaches
zero, the RPS that existing instances can handle (denoted as Ryax)
reaches the maximum. Thus, Ry,4x can be calculated by:

n n i
) bl
Rinax = ZRinax = Z maX{F | tll <tspo) (1)
i=1 i=1 1

AsyFunc: A High-Performance and Resource-Efficient Serverless Inference System via Asymmetric Functions

where tsr o is the latency SLO. With Equation (1), the Scaler makes
the following decisions:

(1) R > aRmax- It means that existing instances cannot satisfy
the predicted average RPS. The Scaler will scale out new
Body Function instances by using the model-level scaling
policy. We denote the residual RPS as Ry which is equal to
R — aRmax-

(2) fRmax < R < aRmax. It indicates that existing instances
can serve requests stably. The Scaler should take no action
to avoid system instability caused by frequent scaling and
node status switching.

(3) R < PRmax- It means that existing instances are beyond the
demand under the predicted average RPS. The Scaler will
release instances to reduce resource waste.

Once the Scaler detects that the instantaneous RPS exceeds the
maximum supported RPS, i.e., Rp,rst > YRmax, it will provision
Shadow Functions through the layer-level scaling policy. Since only
the most resource-sensitive but memory-efficient layers will be
loaded, the online model-loading process makes no perceptible
impact on the latency performance. When the instantaneous RPS
drops below the maximum supported RPS, the Shadow Functions
will be released.

4.2 Model-Level Scaling

Based on Equation (1), the Scaler scales out new Body Function
instances to satisfy the residual RPS or scales in to save resources.

However, it is nontrivial to decide on an appropriate configu-
ration (i.e., # of CPU cores) as the RPS fluctuates. As the number
of allocated CPU cores grows, the instance could achieve a lower
inference latency or process a larger batch at a time with similar
latency. In terms of resource efficiency, allocating more CPU cores
would reduce the processing efficiency represented by the maxi-
mum throughput per core but increase the memory efficiency as
fewer instances will be created. Thus, to select the best configura-
tion, the model-level scaling policy is formulated as follows:

M . .
min Z (cl + pm’) 2)
i=1
Ny bi)
st.R; < zxzmax{F |t} < ts1o), 3)

i=1 l

where ¢ and m! represent # of CPU cores and memory consumption
of the instance i € 1...Nj to be created, and p is a normalizing
factor related to the DL model, calculated by dividing the MACs of
the whole model by its parameter size. Considering that the Body
Function instance loads a complete model in which m' is a fixed
value, the objective function (2) can be converted into min. (th cly
N1 - m). To solve this problem, we develop a heuristic algorithm
for model-level scaling (MLS) which decides the number of created
instances Nj and their configuration c'.

As shown in Algorithm 1, when deciding to scale out (Line 2),
for each core number and batch size (Lines 3-4), MLS first esti-
mates the average longest service time that is equal to the aver-
age longest queuing time plus inference latency (Line 5). If it is
within the latency SLO (Line 6), MLS calculates the resource ef-
ficiency that is defined as the maximum throughput per unit of

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

Algorithm 1 Heuristic Algorithm for Model-Level Scaling

1: X: the set of existing Body Function instances;
x;: the i-th instance in X;
1P the estimated inference latency when the number of CPU
cores and batch size is ¢ and b, respectively;
tsc’b: the estimated longest service time when the number of
CPU cores and batch size is ¢ and b, respectively;
Cpest: the selected configuration of # of CPU cores of the newly
created Body Function;
Nmax: the maximum achievable resource efficiency, initialized
as zero;

2: if R > aRpmqax then

32 forc=1,2-,Cnax do

4: for b = Brax, Bmax — 1, -, 1 do

5: t§’b = % + tlc’b

6: if tsc’b < tsro then
__b b .

T n= c-t;'"b +W,

8: if 1 > Nmax then

9: Nmax = 1;

10: Cbest = C;

11: break;

12: end if

13: end if

14: end for

15: end for

16: while R > aRyqx do

17: Create a Body Function with ¢, of cores on the worker
node with the most available cores.

18: end while

19: else if R < fRpax then

20: Sort X by nmayx in ascending order;

2. fori=1,2,---,|X| do
22: if R < fRmax then
23: Destroy x;;

24: else

25: break;

26: end if

27: end for

28: end if

computing resources plus that per unit of memory resources (Line 7).
Note that the maximum number of CPU cores and the maximum
batch size are restricted to Crmgx and Bpmax, respectively, because it
would be ineffective to further reduce latency by allocating more
cores. Finally, MLS chooses the configuration that maximizes the
resource efficiency (Lines 8-10) to create Body Function instances
until R < aRpax (Lines 16-17). On the contrary, when deciding
to scale in (Line 19), MLS will calculate the maximum resource
efficiency achieved by each instance in X and sort them in ascend-
ing order (Line 20). Then, MLS will destroy them one by one until
R > BRmax-

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

Algorithm 2 Heuristic Algorithm for Layer-Level Scaling

1: X: the set of unpaired Body Function instances sorted by # of
CPU cores in descending order;
x;: the i-th instance in X;
c': # of CPU cores of the i-th instance in X;
ci: the number of available CPU cores on the worker node
where x; resides;
bp, bs: the batch size supported by the Body and Shadow Func-
tions, respectively, on the parallel part;
b: the batch size supported by the Body Function on the non-
parallel part, where b = bg + bs;
L: the set of candidate layer blocks sorted in descending order
by the ratio of its MACs and its parameter size;
®: the set of selected layer blocks, where @ is initialized as @
for each Shadow Function;
mg: the memory consumption of the selected blocks ®;
Dy the best set of layer blocks for the Shadow Function;
2 fori=1,2,---,|X| do
3 if Rpyrst < YRmax and ¢, > 0 then
4 break;
5. endif
6: c= min{Cé, Cmax};
7. foriin L do
8
9

p—opUr
Update mg;
10: for b = Brax, Bmax — 1, -+, 1 do
11 Select bg to min |tc bB - Cb bB|
12: tlc’b = max{tn + t;BbB tC b Cbs}
13: tg’b = toad(9) + tl
14: if t°° < tg10 then
15 1= e
16: if 1 > §max then
17: Nmax =1
18: Poest = ¢
19: break;
20: end if
21: end if
22: end for

23: end for

24: Provision a Shadow Function instance that loads the layer
blocks of ¢p,.s; on the worker node.

25: end for

4.3 Layer-Level Scaling

As shown in Section 2, although the average RPS often varies slowly,
the instantaneous RPS fluctuates severely and unexpectedly. When
bursts arise, the Shadow Function helps improve Ry,qx by increas-
ing the maximum supported batch size of existing Body Function
instances. In the following, we propose a layer-level scaling policy
that scales up Shadow Function instances in a timely manner to
satisfy sudden demands with minimum resource consumption.
Each Body Function instance can be paired with one Shadow
Function instance. Suppose N, represents the number of unpaired

Anon. Submission Id: #181

Body Function instances on all worker nodes, so there are at most
N3 Shadow Function instances to be scaled up, where the Scaler
needs to determine their configurations, including # of CPU cores
and the set of loaded layer blocks. The layer-level scaling policy is
formulated as follows:

N,

min Z (cj + pmj) 4)
j=1
Ny b
st Rpurse <y) max{= |1] < tsio), 6)
J=1 1
t{ = max{t’ + t;B, t{lp + tfs} (6)

where ¢/ and m/ represent # of CPU cores and memory consump-
J

..Ny, and tnp, p ,and tps refer to the

inference latency on the non-parallel part of the Body Function, the

inference latency on the parallel part of the Body Function, and the

inference latency on the parallel part of the Shadow Function plus

the data transmission time. Taking the case shown in Figure 5 as

tion of the instance j € 1.

an example, t,{p refers to the inference latency of layers numbered

1, 4, and 5, t;; g is the inference latency of layers numbered 2 and

3 in the Body Function instance, and t S is the inference latency
of the layer numbered 2 in the Shadow Function instance as well
as the data transmission time. The overall inference latency is the
highest one of (tfl + th) and (tj + tjs)

As an NP-hard problem we convert it into a heuristic algorithm
for realizing the layer-level scaling (LLS). First, LLS gives priority
to Body Functions with higher configurations to be paired with
Shadow Functions. Secondly, layer blocks with higher values of
MAGC:s divided by its parameter size will be selected first. Thirdly,
the number of CPU cores allocated to Shadow Functions is fixed
at Crax; however, if the available CPU cores are insufficient on
the node where the Body Function resides, all the remaining cores
will be allocated. As shown in Algorithm 2, for each Body Function
instance (Line 2), LLS first judges whether all instances can satisfy
the sudden demand and whether there are available cores (Line 3).
If so, LLS determines the number of cores for the Shadow Function,
adds one layer block each time, and updates the memory usage
(Lines 6-9). Next, for each batch size, LLS determines bg and bg
to guarantee the two parallel parts almost finish at the same time
(Lines 10-11). Then, LLS estimates the inference latency based on
Equation (6) and the service time that is equal to the model-loading
time and inference latency (Lines 12-13). If the latency SLO can be
satisfied (Line 14), LLS chooses the configuration that maximizes the
resource efficiency (Lines 15-18) to provision a Shadow Function
instance (Line 24). For the next Body Function, LLS repeats the
above steps until R < yRyqx. Similar to MLS, as the burst passes
off, LLS scales down by destroying Shadow Function one by one
whose 7 is the smallest.

5 REAL-TIME INFERENCE SERVING

In this section, we present the scheduling algorithm to dispatch
incoming requests to the best instance and the coordination mech-
anism to manage Body and Shadow Function instances, both of
which ensure real-time inference serving.

AsyFunc: A High-Performance and Resource-Efficient Serverless Inference System via Asymmetric Functions

Algorithm 3 Adaptive Scheduling Algorithm

1: Q: the waiting queue;
tw: the waiting time of the first request in Q;
X: the set of all Body Function instances sorted by the maximum
supported batch size in ascending order;
x;: the i-th instance in X;

tli: the estimated inference latency if choosing x;;

tE: the estimated longest service time of all requests if choosing
Xis

2 Flag = FALSE;

3. while a request arrives in Q do

4 fori=0,1,...,|X|do

5: if x; is idle then
6 th =ty +1);
7: Record t! in T;
8: if tl < tsp0 < ti- lTlQQ‘)l then
: Schedule Q to x; and clear Q;
10: Flag = TRUE;
11: break;
12: end if
13: end if

14: end for
15: if not Flag then

16: if t;' > tsL0, Vt;' € T, then

17: Choose an idle instance x; with the smallest i;

18: Schedule a portion of the latest requests in Q to x; and
clear Q;

19: else

20: Wait for the next request;

21: end if

22z endif

23: end while

5.1 Adaptive Scheduling

As requests arrive in the waiting queue, the Scheduler needs to
decide on both the appropriate time to dispatch all these requests
as a batch and the best instance to serve them. The former impacts
both the waiting time and inference time as the number of requests
in the waiting queue increases, while the latter only impacts the
inference time. To maximize the processing efficiency (defined
as the actual throughput per core) while keeping a low SLO viola-
tion rate, the Scheduler makes scheduling decisions based on the
following observation: Smaller instances generate higher process-
ing efficiency, while larger instances are more robust to workload
fluctuations as they can process a larger batch size a time.

Hence, we develop an adaptive scheduling algorithm that priori-
tizes smaller instances and leaves behind larger ones for dealing
with bursts. As shown in Algorithm 3, as a new request arrives
(Line 3), the Scheduler first calculates the estimated longest service
time if choosing the idle instance x; (Lines 4-6), and records it in a
list (Line 7). If that instance satisfies the SLO but is expected to cause
SLO violation if waiting for one more request, the Scheduler will dis-
patch all the requests in Q at once and change the flag (Lines 8-10).
If the requests are not successfully scheduled in the end (Line 15),
there are two cases: (1) None of the idle instances can satisfy the

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

Data Flow]
Function Registration Table

o | 1y [Parod . 0] Loadod Loyors] _staus
::’0 a Fn2 Al

[Control Flow

Fn1 B Provisioned
Coordinator € Fn2 s Fn1 [2,34] Provisioning
d d b
Fn1 Fn2
O O
>0 O+O = O
& O & O

(a) The registration phase.

Function Registration Table

Type | Paired Fn. ID| Loaded Layers| Status
86 |0
(0] Al

Fn1 B Fn2 Provisioned
Coordinator Fn2 S Fn1 [2,3,4] Provisioned
Fn3 B None All Provisioning
Shared Memory
a e ¢ d
Fn1 Fn2
O O
O O+0O " O
& O & >0
(b) The inference phase.

Figure 9: Demonstration of the coordination mechanism.

SLO. Hence, to ensure the SLO of as many as requests, the Scheduler
will selectively dispatch a portion of the latest requests in the queue
to an idle instance with the highest configuration (i.e., the smallest i
value) and drop other earlier requests [29] (Lines 16-18); (2) All the
idle instances are expected not to cause an SLO violation if waiting
for one more request. Therefore, the Scheduler will wait for the
next request (Line 20).

5.2 Coordination Mechanism

As introduced in Section 3.5, the Coordinator is distributed on each
worker node and manages the life cycle of all functions. Specifically,
AsyFunc maintains a Function Registration Table (FRT) that records
the metadata information of each function, including the function
ID, function type, ID of its paired function, indexes of loaded DL
model layers, and function status. Upon receiving a scaling decision
from the Scaler, the Coordinator will create or destroy corresponding
functions and update the node and instance status as well as the FRT.
At runtime, AsyFunc uses shared memory for fast data transmission
between functions during a collaborative inference execution.

As plotted in Figure 9a, when receiving a layer-level scaling
decision, @ the Coordinator will parse the received message, insert
arecord into the FRT, and provision a Shadow Function. @ When
the provisioning process completes, @ the Coordinator updates the
function status and @ sends a registration success message to the
corresponding paired functions so that they start to process infer-
ence requests collaboratively. As plotted in Figure 9b, when the
Body Function receives an invocation and then finishes the compu-
tations on the non-parallel part, @ it sends an offloading message
to the Coordinator with the intermediate data to be processed in
parallel. Meanwhile, the Coordinator @ queries the registration
table, obtains the ID of the paired Shadow Function, and @ then
forwards the intermediate data to the Shadow Function. Once the
processing is complete, @ the Shadow Function sends a completion

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

message to the Coordinator with the result data. @ After obtain-
ing the result data from both the Coordinator and local processing,
the Body Function merges them and continues to perform further
computations.

6 IMPLEMENTATION

We implement a real system prototype for AsyFunc with about 3k
lines of code in Python and C++. The real system is implemented
on top of an existing production-ready container orchestration sys-
tem, Kubernetes [24]. The main extension lies in arming existing
serverless inference platforms with both coarse-grained model-level
scaling and fine-grained layer-level scaling capability. Specifically,
we implement the AP Gateway, Scaler, and Scheduler based on the
Python client library for Kubernetes [25], with over 1k lines of
Python code. These modules implement the following functions
including collecting and preprocessing user requests, and making
scaling and scheduling decisions. As the Coordinator needs to use
some Linux libraries (e.g., the mmap library to realize efficient com-
munication between two function instances), we implement the
Coordinator with nearly 500 lines of both Python and C++ code.
We detail the implementation of the Coordinator as follows.

The Coordinator provides caching and communication capabili-
ties to implement the coordination logic presented in Section 5.2.
The cache is reflected by a directory shared by all instances on the
same node, and communication is performed by reading and writ-
ing files in this directory. To minimize the communication latency,
the cache is implemented using the memory filesystem [51] and
mapped to the memory area of each instance using the Linux ker-
nel’s mmap system call [39]. At runtime, the Coordinator monitors
file system events in the cache using the inotify [33] API in the
Linux kernel. The file system events include creating or destroy-
ing instances and transferring data between instances. Specifically,
(1) When a new instance is provisioned, it writes its metadata as
a new file in the cache. Then, once the Coordinator identifies this
event, it reads the metadata of the instance from the file, registers
the instance in its registration table with the metadata, and finally
deletes the file created by the instance; (2) When a Body Function
instance wants to call a Shadow Function instance for offloading
computations, it writes the offloaded data as a new file in the cache,
and the file is differentiated by the instance’s ID. Then, the Coordi-
nator uses the ID to find the corresponding ID of the paired Shadow
Function in the registration table and instructs the Shadow Func-
tion to read the data. After reading the data, the Shadow Function
is responsible for deleting the file. Finally, the Shadow Function
returns the inference result to the Body Function in the same way.

Note that each instance starts a TCP service to receive data noti-
fications from the Coordinator. In this way, only the file’s name is
transmitted over TCP, while the content of the file (i.e., the inter-
mediate data during an inference execution) is transferred directly
using the mmap technology. According to our experiments, it takes
only about 0.5 ms to transfer 1 MB of the data.

In addition, we implement the Extractor and Profiler to obtain
model metadata from our benchmark models (as shown later in
Table 2) offline. Specifically, we developed a toolkit with 600 lines
of Python code for extracting and profiling the layers of the model,
which is embedded as a Python package in our project. The toolkit

10

Anon. Submission Id: #181

is easy to use and requires little change to the code when profiling
a new model. In particular, developers can simply add two lines of
code to automatically analyze the model.

7 EVALUATION

In this section, we investigate the performance of AsyFunc with
extensive experiments using real-world traces. We first introduce
the experimental setup and then show the experimental results
compared to the state-of-the-art.

7.1 Experimental Setup

Environment configuration. We deploy AsyFunc in a local pri-
vate cluster to provide inference services, and the specification of
each node can be found in Table 1. To accelerate the experiments,
we switch our system to the emulation mode as previous work
does [29], where the inference latency under different configura-
tions and the data transferring delay are collected in advance. We
have verified the accuracy of the emulator in our local private
cluster.

Table 1: Experimental environment.

Item Specification

CPU Device Intel Xeon Platinum 8269CY
Number of Sockets 1

Core(s) per Socket 26

Thread(s) per Core 2

Base Frequency 2.50 GHz
Memory Capacity 96 GB
Operating System Ubuntu 18.04

DL Framework PyTorch 1.12

System parameters. The maximum allowed CPU cores Cpax
and the maximum supported batch size B4y in an instance are
set to 16 and 8, respectively. Further, the scaling parameters o and
B are set to 0.8 and 0.6, respectively, based on our preliminary
experiments, and the adaptation period of the model-level scaling is
set as 10 s. Notably, we also measure the data transmission latency
between instances under different data sizes as a reference for the
following evaluation.

User requests. We use real-world traces from Twitter [54] to
generate user requests in a sequence. It represents a typical arrival
of tweets processed for sentiment analysis that has been widely
used for inference serving elsewhere [2, 64]. Figure 1 shows the
arrival intensity of a typical day in the first semester of 2017 which
exhibits obvious burst characteristics.

Inference workloads. We select five representative DL models
as the inference workloads, namely InceptionV3, EfficientNet-b5,
YOLOvV8x, SSD300, ResNet50, and VGG16. The benchmark models
are built on PyTorch which is a popular machine learning frame-
work with the dynamic computational graph support [40], and
the model details are shown in Table 2. All their inference latency
is measured on the server node. Based on the measurements, we
choose the inference latency of the Body Function, when # of allo-
cated cores is 16 (i.e., Cmgx) and the batch size is 8 (i.e., Bmax), as
the latency SLO for the following testing.

AsyFunc: A High-Performance and Resource-Efficient Serverless Inference System via Asymmetric Functions

Table 2: Benchmark DL models.

Model Parameter Size # of Layers
InceptionV3 [52] 92 MB 193
EfficientNet-b5 [53] 117 MB 539
YOLOvSx [44] 131 MB 305
SSD300 [31] 136 MB 65
ResNet50 [21] 171 MB 245
VGG16 [50] 548 MB 45

Performance metrics and baselines. We use DL models shown
in Table 2 to evaluate the performance of AsyFunc by comparing
the following metrics including resource efficiency and the SLO
violation rate with a state-of-the-art baseline BATCH [2]. For fair-
ness of comparison, we integrate BATCH’s scaling policy into our
AsyFunc system, which determines the instance configuration of-
fline and scales at a coarse-grained model level online. In contrast,
AsyFunc combines coarse-grained model-level scaling policy with
a fine-grained layer-level scaling policy to adaptively scale out/in
instances. We also equip BATCH with the adaptive scheduling abil-
ity, and denote this baseline as BATCH?. To show the benefit of
our layer-level scaling, we disable the adaptive scheduling ability
and denote this as AsyFunc™.

7.2 Overall Performance

Memory resource efficiency. We first calculate the memory re-
source efficiency by counting the memory usage of all the provi-
sioned instances in the cluster in each adaptation period. Figure 10
shows the violin plot of the memory footprint of different DL mod-
els under AsyFunc, AsyFunc™, BATCH, and BATCH™" (note that
the memory values are logarithmically spaced). The results re-
veal that AsyFunc-based systems (i.e., AsyFunc and AsyFunc™) are
more memory resource efficient on all six ML models with a lower
memory footprint than BATCH-based systems (i.e., BATCH and
BATCHY"). This is because, under AsyFunc-based systems, there are
fewer active Body Function instances in the cluster simultaneously,
and fewer instance replicas result in less memory consumption. We
summarize two factors that contribute to this superiority. Firstly,
due to a long adaptation period, BATCH-based systems are diffi-
cult to capture short-term variations in RPS through its conser-
vative instance configuration selection strategy. On the contrary,
AsyFunc-based systems can select instance configurations based
on RPS. Thus, when the RPS increases/decreases, they tend to start
a small number of instances equipped with more/fewer CPU cores.
Secondly, given the same historical RPS data, the scaling policy of
BATCH-based systems tends to pre-warm more instances for future
requests than AsyFunc-based systems. This will also increase the
memory footprint. The plot of the memory usage over time in Fig-
ure 11 also supports the above explanation. In summary, AsyFunc
can reduce the memory footprint by up to 23.4%.

Computing resource efficiency. Then, we calculate the com-
puting resource efficiency denoted as the CPU utility in each adapta-

. . el Y. inference_timexcpu_cores
tion period. The CPU utility is defined as S fotal fimescpu cores

As plotted in Figure 12, the CPU utility of AsyFunc is up to 96%,
12% higher than BATCH. The main reason is that there is a short

11

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

8 VGG16 0.5 InceptionV3
o o T T o -
~06 ~00.4
S s —
££4 F 3 - |gEo03 E
o - - o
=g82{ | 1 1 |®g02 A
e L
0 AsyFunc AsyFunc~ BATCH BATCH* 01 AsyFunc AsyFunc~ BATCH BATCH®*
10 EfficientNet-b5 10 ResNet50
.88 L - ——
ég 6 1 Es E.‘i 0.6 4
S5 4 9504 e
=2 =5
22 | £ £ 202 - -
0 AsyFunc AsyFunc~ BATCH BATCH* 0.0 AsyFunc AsyFunc~ BATCH BATCH™*
5 SSD300 20 VOLOV8£7 _
234 o I I E@ 32
g £ 3 g & 24 N N
9521 T T 3516
=2 =28
81 e e S 8 41 1
e o L
0 AsyFunc AsyFunc~ BATCH BATCH™* 0 AsyFunc AsyFunc~ BATCH BATCH™*
Figure 10: The violin plot of the memory usage.
P~ —— AsyFunc
o 7 i
o AsyFunc
= 6 ——- BATCH
£ BATCH *
S I
55 | i
<) |
i [l‘é
>4 [1Ak
4 PR
o \\“‘{! \ i
£ gt
=
2 J
0 50 250

100 150 | 260
Time (every 5 minutes)
Figure 11: The pattern of the memory usage over time.

100 VGG16 100

80
60
40 —_ —_

20 — -
AsyFunc AsyFunc™ BATCH
ResNet50

InceptionV3

©
=)

N
o

CPU utility (%)
o
)
|
l
|
l
CPU utility (%)

yFunc AsyFunc™ BATCH

100 _ EfficientNet-b5 100

A

]

80 T I
60
40

40 1
20 20 ——— —
AsyFunc AsyFunc™ BATCH AsyFunc AsyFunc™ BATCH

100 SSD300 100 YOLOv8x

CPU utility (%)
(=)
S

CPU utility (%)

]

80 T
60 1
40

40 - N . .

CPU utility (%)
o
o
|
[
CPU utility (%)

AsyFunc AsyFunc~ BATCH

AsyFunc AsyFunc~ BATCH BATCH*

Figure 12: The violin plot of the CPU utility.

model-loading time of the Shadow Function that can be provisioned
on demand and destroyed when the arrival intensity drops. It is
worth mentioning that by comparing BATCH and BATCH®, we find
the adaptive scheduling can also improve the CPU utility to some
extent. For example, for model InceptionV3, adaptive scheduling
improves CPU utility by about 11%. The reason is that the adaptive
scheduling can flexibly adjust the batch size of the instance during
the inference serving to make the best use of CPU resources of
instances as much as possible.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

EfficientNet-b5 ResNet50

= .
20 VGG16 340 InceptionV3
o -
15 E 30 o —
10 T _5 20
B 4
; l 2 10 v
> -1 —
O o ol == ab
AsyFunc AsyFunc™ BATCH BATCH* 2 AsyFunc AsyFunc~ BATCH BATCH*
S
o
©

Il

AsyFunc AsyFunc~ BATCH
SSD300

L |]

AsyFunc AsyFunc~ BATCH

BATCH*

AsyFunc AsyFunc~ BATCH
YOLOv8x

BATCH*

L

BATCH*

—
o

5

L

AsyFunc AsyFunc~ BATCH

-

BATCH*

=}

SLO violation rate (%) SLO violation rate (%) SLO violation rate (%)

Figure 13: The violin plot of the SLO violation rate.

SLO violation rate. Finally, we calculate the SLO violation rate
by counting the percentage of requests whose SLO constraint is not
satisfied. Figure 13 shows the violin plot of the SLO violation rate of
different DL models under four systems. As compared to BATCH,
AsyFunc has no significant increase in the SLO violation rate and
even performs better under some models, such as InceptionV3. This
can be attributed to the lightweight layer-level scaling which can
start a Shadow Function instance within a few milliseconds so that
the Body Function instance can offload computations when there
are insufficient resources. In contrast, without the layer-level scal-
ing support, the SLO constraint rate gets higher under AsyFunc™,
especially for model VGG16, where the median SLO violation rate
is 35% higher than that under AsyFunc. Besides, for some models,
e.g., YOLOvS8x, the adaptive scheduling scheme helps reduce the
violation rate too.

The above experimental results verify the strengths of AsyFunc.
In summary, AsyFunc can reduce the memory footprint by up to
23.4% while maintaining the SLO.

7.3 Extension of AsyFunc

Serving transformer-based models. According to our investi-
gation, there may be no significant anti-correlation phenomenon
in transformer-based models. Nevertheless, AsyFunc still outper-
forms the state-of-the-art thanks to our layer-level scaling support
that achieve adaptive trade-off between resource consumption and
performance guarantee by loading different percentage of layers.
According to our experiments on the Vision Transformer (ViT)
model, AsyFunc consumes about 8% fewer memory resources than
BATCH with SLO guarantee.

Extension to GPU support. It is very common to use heteroge-
neous hardware, such as GPUs, for inference executions. As major
serverless platforms do not support heterogeneous hardware at
the moment, we do not include advanced heterogeneous hardware
in our current version. Nervertheless, it complements AsyFunc’s
fine-grained scaling capabilities at the layer level. Here, we briefly il-
lustrate how AsyFunc can be equipped with the GPU support. First,
in the scaling algorithm, the GPU resources can be represented as
the number of SM (vs. # of CPU cores) and/or the GPU memory

12

Anon. Submission Id: #181

usage (vs. the host memory) with virtualization technologies like
virtual GPU and Multi-Instance GPU. Second, for the implementa-
tion, the CPU functions can be replaced by GPU-supported ones,
such as nvidia-docker. There are indeed some technical issues to
overcome, such as efficient coordination between CPU instances
and GPU instances and the logic of data exchange between the
Body Function and Shadow Function. It would be an interesting
future work to extend our approach to these scenarios in practice.

8 RELATED WORK

In this section, we briefly review some related work in both academia
and industry.

Conventional model serving. Many efforts have been devoted
to designing efficient scheduling mechanisms for model serving to
achieve various objectives, e.g., low end-to-end latency [11, 18, 29,
60], high throughput [15, 20, 29], high resource efficiency [32, 58],
and good fairness [26]. However, they only focus on the applica-
tion layer, without digging into the bottom inference platforms,
leaving a large performance gap to be filled. Additionally, facing
the widespread burstiness in the production environment, these
prior arts cannot adapt to the fluctuating workload efficiently, lead-
ing to a significant trade-off between performance and resource
efficiency. Although AlpaServe [29] employs statistical multiplex-
ing with model parallelism to reduce serving latency for bursty
workloads, the biggest difference is that it focuses on static provi-
sioning through automatic parallelization and placement of models,
ignoring the auto-scaling capability that serverless native supports.

To meet latency requirements of model serving, especially with
the recent advent of large language models such as ChatGPT [9],
there has been a great deal of work on inference optimization. These
include techniques such as quantization [13], knowledge distilla-
tion [22], and model pruning [19], with some of these optimizations
aimed at stemming the tide of growing model sizes. However, these
offerings are complementary to AsyFunc in that we provide fine-
grained layer-level scaling capability that enables fast response to
significant and unpredictable fluctuations of workload levels.

Serverless inference. Driven by the development of serverless
computing, many works [2, 6, 27, 62-64] have attempted to deploy
efficient machine learning inference serving on serverless platforms
to make full use of its rapid elasticity and fine-grained billing ability.
Nevertheless, although these techniques consider an auto-scaling
setting, most of them regard the DL model as a complete black
box [2, 6, 62, 64], which leads to resource inefficiency at a coarse-
grained model-level scaling when directly applied for serverless
inference serving. Recent literature has further attempted to open
the box to reduce resource footprint during scaling through tensor
sharing [27], but they still lack generalizability in dealing with a
large model family as they only focus on the rare layer sameness.
By contrast, AsyFunc fully exploits the differences between the
widespread model layers to be more general applicability. Gillis [63]
is another work to open the box, which partitions large DL models
so that they can fit small functions. By comparison, AsyFunc focuses
on the scaling problem of serverless platforms and only scales out
resource-sensitive layers to perform additional computations as
bursts arise.

AsyFunc: A High-Performance and Resource-Efficient Serverless Inference System via Asymmetric Functions

Serverless cold start. Serverless cold start optimization has
been an active research topic in recent years [1, 5, 28, 38, 47-49,
55, 56]. These works typically adopt two different technical paths,
including (1) avoiding cold starts based on predictive prewarming
techniques [5, 47] and container keep-alive strategies [38, 48], and
(2) reducing the latency of a single cold start based on snapshots [55,
56] and lightweight runtime techniques [1, 28, 49]. Taking industrial
practices as an example, Azure deploys a practical hybrid histogram
policy by characterizing the serverless workloads to dynamically
decide the values of the prewarming and keep-alive window, which
significantly reduces the number of cold starts while spending fewer
resources [48]. However, these works focus on OS-level cold starts,
while AsyFunc deals with application-level cold starts of inference
services. They are complementary to each other to further improve
the resource efficiency of real-time serverless inference serving by
cloud providers.

9 CONCLUSION

In this paper, we propose a high-performance and resource-efficient
serverless inference serving system called AsyFunc in the presence
of bursty workloads. By analyzing the measurement results on the
impact of DL models’ completeness, we find that the model layer’s
sensitivity to computational resources is largely anti-correlated
with its parameter size, and the latter further determines the mem-
ory resource usage and model-loading time. Driven by this, we
propose a new concept of asymmetric functions where the origi-
nal Body Function still loads a complete model to satisfy stable
demands, while the proposed lightweight Shadow Function loads
only a portion of resource-sensitive layers to handle surging de-
mands effortlessly. On top of Kubernetes, AsyFunc is equipped
with a new fine-grained auto-scaling and scheduling engine to
achieve the above goals. The experimental results using real-world
traces show that AsyFunc outperforms the state-of-the-art system
by 23.4% in resource efficiency while meeting the latency SLO of
inference services during bursts.

REFERENCES

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight

virtualization for serverless applications. In 17th USENIX symposium on networked

systems design and implementation (NSDI 20). 419-434.

Ahsan Alj, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. BATCH: Ma-

chine learning inference serving on serverless platforms with adaptive batching.

In SC20: International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE, 1-15.

[3] AWS. [n.d.]. Alexa skills. https://docs.aws.amazon.com/wellarchitected/latest/
serverless-applications-lens/alexa- skills.html[Online Accessed, 8-June-2023].

[4] AWS. [n.d.]. Amazon SageMaker. https://aws.amazon.com/sagemaker/[Online
Accessed, 8-June-2023].

[5] Vivek M Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran, Cyan Subhra
Mishra, Mahmut Taylan Kandemir, and Chita Das. 2021. Kraken: Adaptive
container provisioning for deploying dynamic dags in serverless platforms. In
Proceedings of the ACM Symposium on Cloud Computing. 153-167.

[6] Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei Kang, Hongyang Sun,
Aniruddha Gokhale, and Gabor Karsai. 2019. BARISTA: Efficient and scalable
serverless serving system for deep learning prediction services. In 2019 IEEE
International Conference on Cloud Engineering (ICZE). IEEE, 23-33.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and

0

13

[12

[13

(14]

jpory
)

(16

(17

[18

=
2

[20

[21

[22

[23

[24

[25

[26]

[27

[28

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

Dario Amodei. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Brad Calder, Glenn Reinman, and Dean M Tullsen. 1999. Selective value prediction.
In Proceedings of the 26th annual international symposium on computer architecture.
64-74.

ChatGPT. 2022. Introducing ChatGPT. Retrieved May 25, 2023 from https:
//openai.com/blog/chatgpt

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael] Franklin, Joseph E Gonzalez,
and Jon Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving System.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). 613-627.

Weihao Cui, Han Zhao, Quan Chen, Hao Wei, Zirui Li, Deze Zeng, Chao Li, and
Minyi Guo. 2022. DVABatch: Diversity-aware Multi-Entry Multi-Exit Batching for
Efficient Processing of DNN Services on GPUs. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). 183-198.

Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2020. Xanadu: Mitigat-
ing cascading cold starts in serverless function chain deployments. In Proceedings
of the 21st International Middleware Conference. 356-370.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022. GPT3.
int8 (): 8-bit matrix multiplication for transformers at scale. Advances in Neural
Information Processing Systems 35 (2022), 30318-30332.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. 2020. GSLICE: Con-
trolled Spatial Sharing of GPUs for a Scalable Inference Platform. In Proceedings
of the 11th ACM Symposium on Cloud Computing. 492-506.

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-
uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond startup for serverless
computing with initialization-less booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 467-481.

Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S McKinley, and Bjérn B
Brandenburg. 2017. Swayam: distributed autoscaling to meet SLAs of machine
learning inference services with resource efficiency. In Proceedings of the 18th
ACM/IFIP/USENIX middleware conference. 109-120.

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving DNNs like Clockwork: Performance
Predictability from the Bottom Up. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 443-462.

Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. Advances in neural information
processing systems 28 (2015).

Johann Hauswald, Yiping Kang, Michael A Laurenzano, Quan Chen, Cheng Li,
Trevor Mudge, Ronald G Dreslinski, Jason Mars, and Lingjia Tang. 2015. DjiNN
and Tonic: DNN as a Service and Its Implications for Future Warehouse Scale
Computers. In 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA). IEEE, 27-40.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770~778. https://doi.org/10.1109/CVPR.2016.90
Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

Oleksiy Kovyrin. [n.d.]. Make Data Useful by Greg Linden. https://www.scribd.
com/doc/4970486/[Online Accessed, 8-June-2023].

kubernetes. 2023. Production-Grade Container Orchestration. Retrieved June 8,
2023 from https://kubernetes.io/

Kubernetes Python Client. 2023. Official Python client library for kubernetes.
Retrieved June 8, 2023 from https://github.com/kubernetes-client/python

Tan N Le, Xiao Sun, Mosharaf Chowdhury, and Zhenhua Liu. 2020. AlloX:
compute allocation in hybrid clusters. In Proceedings of the Fifteenth European
Conference on Computer Systems. 1-16.

Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. 2022. Tetris: Memory-
efficient Serverless Inference through Tensor Sharing. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22).

Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi Tao, Bin Zha,
Qiang Wang, Weidong Han, and Minyi Guo. 2022. RunD: A Lightweight Secure
Container Runtime for High-density Deployment and High-concurrency Startup
in Serverless Computing. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22). 53-68.

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin,
Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez, and Ion Sto-
ica. 2023. AlpaServe: Statistical Multiplexing with Model Parallelism for Deep
Learning Serving. In 17th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23). 663-679.

Yanying Lin, Kejiang Ye, Yongkang Li, Peng Lin, Yingfei Tang, and Chengzhong
Xu. 2021. BBServerless: A Bursty Traffic Benchmark for Serverless. In Interna-
tional Conference on Cloud Computing. Springer, 45-60.

https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/alexa-skills.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/alexa-skills.html
https://aws.amazon.com/sagemaker/
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://doi.org/10.1109/CVPR.2016.90
https://www.scribd.com/doc/4970486/
https://www.scribd.com/doc/4970486/
https://kubernetes.io/
https://github.com/kubernetes-client/python

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA

[31]

[32]

[33]

[34]

[35]

[36

[37]

[38]

[39

[40]

[41]

[42]

[43]

[44]

[45

[46]

[47]

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21-37.

Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo.
2022. VELTAIR: towards high-performance multi-tenant deep learning services
via adaptive compilation and scheduling. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 388-401.

Robert Love. 2005. Kernel korner: Intro to inotify. Linux Journal 2005, 139 (2005),
8.

Peter Mattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg Diamos,
David Kanter, Paulius Micikevicius, David Patterson, Guenther Schmuelling,
Hanlin Tang, Gu-Yeon Wei, and Carole-Jean Wu. 2020. MLPerf: An Industry
Standard Benchmark Suite for Machine Learning Performance. IEEE Micro 40, 2
(2020), 8-16.

Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux J. 2014, 239, Article 2 (mar 2014).

Hai Duc Nguyen, Chaojie Zhang, Zhujun Xiao, and Andrew A Chien. 2019. Real-
time serverless: Enabling application performance guarantees. In Proceedings of
the 5th International Workshop on Serverless Computing. 1-6.

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK: Rapid task provi-
sioning with Serverless-Optimized containers. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). 57-70.

Li Pan, Lin Wang, Shutong Chen, and Fangming Liu. 2022. Retention-aware
container caching for serverless edge computing. Proc. of I[EEE INFOCOM, IEEE
(2022).

Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros, Manolis Maraza-
kis, and Angelos Bilas. 2020. Optimizing Memory-mapped I/O for Fast Storage
Devices. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). 813-827.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32.
Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/
file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Qiangyu Pei, Shutong Chen, Qixia Zhang, Xinhui Zhu, Fangming Liu, Ziyang Jia,
Yishuo Wang, and Yongjie Yuan. 2022. CoolEdge: hotspot-relievable warm water
cooling for energy-efficient edge datacenters. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 814-829.

Pytorch. [n. d.]. SAVING AND LOADING MODELS. https://pytorch.org/tutorials/
beginner/saving_loading_models.html[Online Accessed, 8-June-2023].

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger,
Qirong Ho, Hao Zhang, Gregory R Ganger, and Eric P Xing. 2021. Pollux: Co-
adaptive cluster scheduling for goodput-optimized deep learning. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 21).

Dillon Reis, Jordan Kupec, Jacqueline Hong, and Ahmad Daoudi. 2023. Real-Time
Flying Object Detection with YOLOVS. arXiv preprint arXiv:2305.09972 (2023).
Mariliis Retter. [n. d.]. Serverless Case Study — Netflix. https://dashbird.io/blog/
serverless- case-study-netflix/[Online Accessed, 8-June-2023].

Francisco Romero, Qian Li, Neeraja] Yadwadkar, and Christos Kozyrakis. 2021.
INFaaS: Automated Model-less Inference Serving. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21). 397-411.

Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker: warming
serverless functions better with heterogeneity. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and

Anon. Submission Id: #181

Operating Systems. 753-767.

Mohammad Shahrad, Rodrigo Fonseca, Iiiigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 205-218.

Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight isolation for effi-
cient stateful serverless computing. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). 419-433.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Peter Snyder. 1990. tmpfs: A virtual memory file system. In Proceedings of the
autumn 1990 EUUG Conference. 241-248.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2818-2826.

https://doi.org/10.1109/CVPR.2016.308
Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for

convolutional neural networks. In International conference on machine learning.
PMLR, 6105-6114.

Twitter. [n. d.]. Twitter trace on May 25th. https://github.com/rickypinci/BATCH/
tree/sc2020/traces[Online Accessed, 8-June-2023].

Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris Grot.
2021. Benchmarking, analysis, and optimization of serverless function snapshots.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 559-572.

Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable execution
optimized for page sharing for a managed runtime environment. In Proceedings
of the Fourteenth EuroSys Conference 2019. 1-16.

Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He,
Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaa$ in the Wild: Workload
Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22).
945-960.

[58] Jing Wu, Lin Wang, Qiangyu Pei, Xingqi Cui, Fangming Liu, and Tingting Yang.

2022. HiTDL: High-throughput deep learning inference at the hybrid mobile edge.
IEEE Transactions on Parallel and Distributed Systems 33, 12 (2022), 4499-4514.
Yuncheng Wu, Tien Tuan Anh Dinh, Guoyu Hu, Meihui Zhang, Yeow Meng
Chee, and Beng Chin Ooi. 2021. Serverless Data Science-Are We There Yet? A
Case Study of Model Serving. arXiv e-prints (2021), arXiv-2103.

Yecheng Xiang and Hyoseung Kim. 2019. Pipelined data-parallel CPU/GPU
scheduling for multi-DNN real-time inference. In 2019 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 392-405.

Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shangguang
Wang, Ke Li, Jingyu Yang, and Xuanzhe Liu. 2021. From cloud to edge: a first look
at public edge platforms. In Proceedings of the 21st ACM Internet Measurement
Conference. 37-53.

Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao,
Xingzhen Chen, and Keqiu Li. 2022. INFless: a native serverless system for low-
latency, high-throughput inference. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 768-781.

Minchen Yu, Zhifeng Jiang, Hok Chun Ng, Wei Wang, Ruichuan Chen, and Bo Li.
2021. Gillis: Serving large neural networks in serverless functions with automatic
model partitioning. In 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). IEEE, 138-148.

Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. MArk: Exploit-
ing Cloud Services for Cost-Effective, SLO-Aware Machine Learning Inference
Serving. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 1049—
1062.

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://pytorch.org/tutorials/beginner/saving_loading_models.html
https://pytorch.org/tutorials/beginner/saving_loading_models.html
https://dashbird.io/blog/serverless-case-study-netflix/
https://dashbird.io/blog/serverless-case-study-netflix/
https://doi.org/10.1109/CVPR.2016.308
https://github.com/rickypinci/BATCH/tree/sc2020/traces
https://github.com/rickypinci/BATCH/tree/sc2020/traces

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Scaling Issue of Serverless Inference
	2.2 Heterogeneous Behavior of Layers
	2.3 Opportunities of the Layer-level Scaling

	3 System Design
	3.1 Design Philosophy
	3.2 System Overview
	3.3 Extractor & Profiler
	3.4 Scaler
	3.5 Scheduler & Coordinator

	4 Fine-grained Scaling Mechanism
	4.1 Scaling Principle
	4.2 Model-Level Scaling
	4.3 Layer-Level Scaling

	5 Real-Time Inference Serving
	5.1 Adaptive Scheduling
	5.2 Coordination Mechanism

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Overall Performance
	7.3 Extension of AsyFunc

	8 Related Work
	9 Conclusion
	References

