N
Check for
Updates

New Problems in Distributed Inference for DNN Models on
Robotic loT

Zekai Sun
The University of Hong Kong
Hong Kong, China
zksun@cs.hku.hk

Fangming Liu
Peng Cheng Laboratory, and

Huazhong University of Science and

Technology
Wubhan, China
fmliu@hust.edu.cn

ABSTRACT

The rapid advancements in machine learning (ML) techniques have
led to significant achievements in various robotic tasks. Deploying
these ML approaches on real-world robots requires fast and energy-
efficient inference of their deep neural network (DNN) models. To
our knowledge, distributed inference, which involves inference
across multiple powerful GPU devices, has emerged as a promising
optimization to improve inference performance in modern data
centers. However, when deployed on real-world robots, existing
parallel methods can not simultaneously meet the robots’ latency
and energy requirements and raise significant challenges.

This paper reveals and evaluates the problems hindering the ap-
plication of these parallel methods in robotic IoT, including the fail-
ure of data parallelism, the unacceptable communication overhead
of tensor parallelism, and the significant transmission bottlenecks
in pipeline parallelism. By raising awareness of these new problems,
we aim to stimulate research toward finding a new parallel method
to achieve fast and energy-efficient distributed inference in robotic
IoT.

CCS CONCEPTS

« Computer systems organization — Robotics; + Networks —
Network performance analysis.

KEYWORDS
Distributed inference, Robotic IoT, Distributed system and network

ACM Reference Format:
Zekai Sun, Xiuxian Guan, Junming Wang, Fangming Liu, and Heming Cui.
2024. New Problems in Distributed Inference for DNN Models on Robotic IoT.

“Heming Cui is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ApPLIED 24, June 17, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0670-7/24/06

https://doi.org/10.1145/3663338.3665828

Xiuxian Guan
The University of Hong Kong
Hong Kong, China
xxguan@cs.hku.hk

Junming Wang
The University of Hong Kong
Hong Kong, China
jmwang@cs.hku.hk

Heming Cui”
The University of Hong Kong
Hong Kong, China
heming@cs.hku.hk

In Advanced Tools, Programming Languages, and PLatforms for Implementing
and Evaluating algorithms for Distributed systems (ApPLIED’24), June 17,
2024, Nantes, France. ACM, New York, NY, USA, ?? pages. https://doi.org/10.
1145/3663338.3665828

1 INTRODUCTION

The rapid progress in machine learning (ML) techniques has led
to remarkable achievements in various fundamental robotic tasks,
such as object detection [? ? ?], robotic control [? ? ?], and en-
vironmental perception [? ? ?]. However, deploying these ML
applications on real-world robots requires fast and energy-efficient
inference of their deep neural network (DNN) models, given the
need for swift environmental responses and the limited battery
capacity of robots. Placing the entire model on robots not only
requires additional computing accelerators on robots (e.g., GPU [?
], FPGA [?], SoC [?]), but also introduce additional energy con-
sumption (e.g., 162% more for [?] in our experiments) due to the
computationally intensive nature of DNN models, while placing
the entire model in the cloud brings an extended response delay.

Distributed inference, which involves inference across multiple
GPU devices, has emerged as a promising approach to meet the
latency requirements of robotic applications and extend the battery
lifetime of robots. This paradigm has been widely adopted in data
centers [? ? ?], where numerous GPUs are utilized to speed large
model inference, such as in the case of ChatGPT [?]. Adopting
distributed inference across robots and other powerful GPU de-
vices through the Internet of Things for these robots (robotic IoT)
not only accelerates the inference process by leveraging the high
computing capabilities of powerful GPUs but also alleviates the
local computational burden, thereby reducing energy consumption,
making it an ideal solution for robotic applications.

However, all existing parallel methods for distributed inference
in the data center are ill-suited for robotic IoT. In data centers, there
are mainly three kinds of parallel methods: Data parallelism (DP)
replicates the model across devices, and lets each replica handle
one mini-batch (i.e., a subset that slices out of an input data set);
Tensor parallelism (TP) splits a single DNN layer over devices;
Pipeline parallelism (PP) places different layers of a DNN model
over devices (layer partitioning) and pipelines the inference to
reduce devices’ idling time (pipeline execution). In this paper, we

https://orcid.org/0000-0003-0269-7940
https://orcid.org/0000-0001-6133-8388
https://orcid.org/0000-0002-2271-8270
https://orcid.org/0000-0002-8570-1345
https://orcid.org/0000-0001-7746-440X
https://doi.org/10.1145/3663338.3665828
https://doi.org/10.1145/3663338.3665828
https://doi.org/10.1145/3663338.3665828
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3663338.3665828&domain=pdf&date_stamp=2024-06-20

ApPLIED’24, June 17, 2024, Nantes, France

demonstrate several issues that impede the application of existing
parallel methods in robotic IoT.

Problem 1 (DP). The small batch sizes inherent to robotic IoT
applications (typically 1) hinder the mini-batch computation, ren-
dering DP inapplicable for robotic IoT. In the data center, DP is
feasible due to the large batch sizes employed (e.g., 16 images), al-
lowing for the division of inputs into mini-batches that still contain
several complete inputs (e.g., 2 images). However, in robotic IoT,
real-time performance is crucial, necessitating immediate inference
upon receiving inputs, which typically have smaller batch sizes (e.g.,
1 image). Further splitting these inputs would result in mini-batches
containing incomplete inputs (e.g., 1/4 of an image), which cannot
be computed in parallel to speed up inference.

Problem 2 (TP). TP requires frequent synchronization among
devices, leading to unacceptable communication overhead in robotic
IoT. By partitioning parameter tensors of a layer across GPUs, TP
allows concurrent computation on different parts of this tensor but
requires an all-reduce communication [?] to combine computation
results from different devices, which entails significant communi-
cation overhead. Consequently, TP is used mainly for large layers
that are too large to fit in one device in data centers and require
dedicated high-speed interconnects (e.g., 400 Gbps for NVLink [?])
even within data centers. On the contrary, robots must prioritize
seamless mobility and primarily depend on wireless connections,
which inherently possess limited bandwidth, as described in Sec. ??,
making all-reduce synchronization an unacceptable overhead (e.g.,
the inference time with TP was up to 143.9X slower than local
computation in our experiments).

Consequently, existing distributed inference approaches [? ?]
in robotic IoT primarily adopt the PP paradigm and focus on layer
partitioning of PP, aiming to achieve fast and energy-efficient in-
ference. This is because the PP paradigm in data centers consists of
layer partitioning and pipeline execution, where the pipeline execu-
tion of PP enhances inference throughput rather than reducing the
completion time of a single inference [?], which is the most critical
requirement in robotic IoT. Based on the fact that the amounts
of output data in some intermediate layers of a DNN model are
significantly smaller than that of its raw input data [?], DNN layer
partitioning methods constitute various trade-offs between compu-
tation and transmission, taking into account application-specific
inference speed requirements and energy consumption demands,
as shown in Fig. ??.

Problem 3 (PP). Existing methods based on PP face significant
challenges due to transmission bottlenecks in robotic IoT, which are
inherent to the PP’s scheduling mechanism. PP is unable to overlap
the transmission and computation phases within the same inference
to alleviate the transmission overhead, as it can only overlap these
phases across multiple inferences via pipeline execution, which
increases inference throughput but not the completion time of a
single inference [?]. Even with optimal layer partitioning from [? ?],
such transmission overhead inherent to PP’s scheduling mechanism
still becomes a substantial bottleneck due to the limited bandwidth
of robotic IoT (e.g., up to 69% of inference time in our experiments).

In this paper, we take the first step to reveal and evaluate the
problems hindering existing parallel methods for distributed infer-
ence applying to robotic IoT. These findings aim to raise research

Zekai Sun, Xiuxian Guan, Junming Wang, Fangming Liu, and Heming Cui

—
o
S
S

mmm Robot Computation Time (ms)
Transmission Time (ms)
mmm Server Computation Time (ms)

~
a
o

Latency (Millisecond)
N v
g o
o o

(=}

[Ne)

\!_\ PR\ \-é\'\-c}\lé\ 3;)\3&@‘0&‘0

0\\“0 \a‘\e \’L\b\!@} oOQ\aﬂa‘ 00\1\'&!?} 00\1\3\@ ’L?ﬂe‘ NS x; o \)0 o
\«\'o* «®@ s «° s «@ s \((\3*’ @© s

(a) Inference Latency

B Energy Consumption of Computation (J)
w75 Energy Consumption of Transmission (J)

IS

N

7
Z

=

Energy(JC:L“seL)|mpt|on
& NN\
N

(=}

[Na)
) <
\a:oﬂ")o \zﬂe‘ \7—&"/‘x SN e‘xcﬂé\)e‘l \1&\;"53 \1&\!"" %*e 0“‘\6‘*e 0\’0
o© °© o° ©
w37 s 'S 'S X
\«\ «@ \d\a «@ «@ q()

(b) Energy consumption

Figure 1: Our experiments on VGG19 [?] reveal the compre-
hensive performance of various layer partitioning methods.
The X-axis of the graph represents different layer partition-
ing scheduling schemes, where ’layer i’ signifies that all lay-
ers up to and including the i-th layer are computed on the
robot, while the subsequent layers are processed on the GPU
server. Note that different hardware conditions, network con-
ditions and DNN model structure will lead to different perfor-
mance, making this field an attractive area for a wide range
of research.

efforts to find a new parallel method to speed up distributed infer-
ence on robotic IoT so that the DNN models deployed on real-world
robots can achieve fast and energy-efficient inference, and it will
nurture diverse ML applications deployed on mobile robots in the
field.

The rest of the paper is organized as follows: Sec. ?? introduces
the characteristics of robotic IoT; Sec. ?? describes in detail the
problems on distributed inference on robotic IoT; Sec. ?? provides
evaluation results; Sec. ?? concludes the paper.

2 BACKGROUND
2.1 Characteristics of Robotic IoT

In real-world robotic IoT scenarios, devices often navigate and
move around for tasks like search and exploration. While wireless
networks provide high mobility, they also have limited bandwidth.
For instance, Wi-Fi 6, the most advanced Wi-Fi technology, offers a
maximum theoretical bandwidth of 1.2 Gbps for a single stream [?
]. However, not only the limited hardware resources on the robot
can not fully play the potential of Wi-Fi 6 [?], but also the actual
available bandwidth of wireless networks is often reduced in prac-
tice due to factors such as movement of the devices [? ?], occlusion

New Problems in Distributed Inference for DNN Models on Robotic loT

from by physical barriers [? ?], and preemption of the wireless
channel by other devices [? ?].

To demonstrate the instability of wireless transmission in real-
world situations, we conducted a robot surveillance experiment
using four-wheel robots navigating around several given points at
5-40cm/s speed in our lab (indoors) and campus garden (outdoors),
with hardware and wireless network settings as described in Sec. ??.
We believe our setup represents robotic IoT devices’ state-of-the-
art computation and communication capabilities. We saturated
the wireless network connection with iperf [?] and recorded the
average bandwidth capacity between these robots every 0.1s for 5
minutes.

2200 2200
z S
£ £
$£100 £100
=] T
f=4 f=4
3 8
0 0
0 100 200 300 0 100 200 300
time (s) time (s)

(a) Indoors (b) Outdoors
Figure 2: The instability of wireless transmission between
our robot and a base station in robotic IoT networks.

The results in Fig. ?? show average bandwidth capacities of 93
Mbps and 73 Mbps for indoor and outdoor scenarios, respectively.
The outdoor environment exhibited higher instability, with band-
width frequently dropping to extremely low values around 0 Mbps,
due to the lack of walls to reflect wireless signals and the presence
of obstacles like trees between communicating robots, resulting in
fewer received signals compared to indoor environments.

In summary, robotic IoT systems’ wireless transmission is con-
strained by limited bandwidth, both due to the theoretical upper
limit of wireless transmission technologies and the practical insta-
bility of wireless networks.

2.2 Characteristics of Data Center Networks

Data center networks, which are used for large model inference (e.g.,
ChatGPT [?]), are wired and typically exhibit higher bandwidth
capacity and lower fluctuation compared to robotic IoT networks.
GPU devices in data centers are interconnected using high-speed
networking technologies such as InfiniBand [?] or PCle [?], offer-
ing bandwidths ranging from 40 Gbps to 500 Gbps. The primary
cause of bandwidth fluctuation in these networks is congestion
on intermediate switches, which can be mitigated through traffic
scheduling techniques implemented on the switches [?]. The stable
and high-bandwidth nature of data center networks makes them
well-suited for demanding tasks like large model inference, in con-
trast to the more variable and resource-constrained environments
found in robotic IoT networks.

ApPLIED’24, June 17, 2024, Nantes, France

2.3 Existing distributed inference strategies in
the data center

Data parallelism. Data parallelism [?] is a widely used technique
in distributed inference that partitions input data across multiple
devices, such as GPUs, to perform parallel inference. Each device
maintains a complete model replica and independently processes a
subset of the input data (mini-batch), aggregating results to gen-
erate the final output. Data parallelism enhances throughput by
distributing workload across devices, leveraging their combined
computational power.

However, data parallelism’s scalability is constrained by the
total batch size [?], which is particularly problematic in robotic
IoT applications where smaller batch sizes are inherent due to the
need for swift environmental responses. In robotic applications,
immediate inference upon receiving inputs is crucial for obtaining
real-time target points quickly. For example, in our experiments,
the robot constantly obtains the latest images from the camera for
inference, with a batch size of only 1. These small batches cannot
be further split into mini-batches, a fundamental requirement for
effective data parallelism.

Tensor parallelism. Tensor parallelism [?] is a distributed in-
ference technique that divides a model’s layer parameters across
multiple devices, each storing and computing a portion of the pa-
rameter tensors. This approach requires an all-reduce communica-
tion step after each layer to combine results from different devices,
introducing significant overhead, especially for large DNN layers.
To mitigate this, TP is typically deployed across GPUs within the
same server in data centers, using fast intra-server GPU-to-GPU
links like NVLink [?], which is beneficial when the model is too
large for a single device.

In contrast to data center networks, the limited bandwidth in
robotic IoT (see Sec. ??) renders the communication cost of TP pro-
hibitively high. Our experiments demonstrate that the all-reduce
communication cost of TP can consume up to 94% of the total in-
ference time, leading to a upper to 143.9x increase in inference
time and 62.7x higher energy consumption per inference compared
to computing the entire model locally on the robot (see Sec.??).
Such significant overhead introduced by TP’s communication re-
quirements makes it impractical for deployment in bandwidth-
constrained robotic IoT environments.

Pipeline parallelism. Pipeline parallelism [?] is a distributed
inference technique that partitions DNN model layers across multi-
ple devices(layer partitioning), forming an inference pipeline for
concurrent processing of multiple tasks. While PP can increase
throughput and resource utilization via pipeline execution, it pri-
marily focuses on enhancing overall throughput rather than reduc-
ing single-inference latency [?], which is crucial in robotic IoT. As a
result, existing distributed inference approaches [? ?] in robotic IoT
mainly concentrate on the layer partitioning aspect of PP, aiming to
achieve fast and energy-efficient inference by optimizing the alloca-
tion of DNN layers across devices while considering factors such as
device capabilities, network bandwidth, and energy consumption,
as discussed further in Sec. ??.

ApPLIED’24, June 17, 2024, Nantes, France

2.4 Other methods to speed up DNN Models
Inference on Robotic IoT

Compressed communication. Compressed communication is
crucial for efficient distributed inference in wireless networks, as it
significantly reduces communication overhead through techniques
such as quantization and model distillation. Quantization [? ? ?] is
a technique that reduces the numerical precision of model weights
and activations, thereby minimizing the memory footprint and com-
putational requirements of deep learning models. This process typi-
cally involves converting high-precision (e.g., 32-bit) floating-point
values to lower-precision (e.g., 8-bit) floating-point representations,
with minimal loss of model accuracy. Model distillation [? ? ?], on
the other hand, is an approach that involves training a smaller, more
efficient “student” model to mimic the behavior of a larger, more
accurate “teacher” model by minimizing the difference between the
student model’s output and the teacher model’s output. The distilled
student model retains much of the teacher model’s accuracy while
requiring significantly fewer resources. These model compression
methods complement distributed inference by achieving faster in-
ference speed through model modifications, potentially sacrificing
some accuracy with smaller models, while distributed inference
realizes fast inference without loss of accuracy by intelligently
scheduling computation tasks across multiple devices.

Inference Job scheduling. Significant research efforts have
been devoted to exploring inference parallelism and unleashing
the potential of layer partition to accelerate DNN inference, such
as inference job scheduling, aiming to accelerate multiple DNN
inference tasks by optimizing their execution on various devices
under different network bandwidths while considering application-
specific inference speed requirements and energy consumption
demands. For instance, [? ?] support online scheduling of offload-
ing inference tasks based on the current network and resource
status of mobile systems while meeting user-defined energy con-
straints. [?] focused on optimizing DNN inference workloads in
cloud computing using a deep reinforcement learning based sched-
uler for QoS-aware scheduling of heterogeneous servers, aiming to
maximize inference accuracy and minimize response delay. While
these methods focus on overall optimization in multi-task scenarios
involving multi-robots, they do not address the optimization of
single inference tasks and are thus orthogonal to distributed infer-
ence for a single inference, where improved distributed inference
can provide faster and more energy-efficient inference for these
scenarios.

3 PROBLEMS IN EXISTING DISTRIBUTED
INFERENCE FOR DNN MODELS ON
ROBOTIC 10T

3.1 Existing distributed inference on robotic IoT

Existing distributed inference approaches [? ?] in robotic IoT pri-
marily adopt the PP paradigm and focus on layer partitioning to
achieve fast and energy-efficient inference. These approaches can be
divided into two main categories based on their optimization goals:
accelerating inference for diverse DNN structures and optimizing
robot energy consumption during inference.

Zekai Sun, Xiuxian Guan, Junming Wang, Fangming Liu, and Heming Cui

To accelerate inference, earlier methods [? ? ?] focused on sim-
ple chain-like DNN models by exploiting the smaller output data
sizes of intermediate layers compared to raw input data [?], creat-
ing trade-offs between computation and transmission to minimize
overall inference time (see Fig. ??). However, the increasing com-
plexity of DNN structures, now evolved into directed acyclic graphs
(DAGs), poses new challenges, potentially leading to NP-hardness
in performance optimization [?]. This issue is addressed by graph
theory techniques [? ?] and varying hardware and network condi-
tions further complicate the problem.

To optimize energy consumption, existing methods [? ? ?] build
upon the aforementioned techniques and consider reducing the
system energy consumption of the entire layer partitioning execu-
tion process under deadline constraints. While [?] only considers
transmission energy consumption, [? ?] aim to reduce the whole
system’s energy consumption during DNN layer execution and
data transfer.

In summary, these two categories primarily adopt the PP para-
digm but suffer from the transmission bottleneck inherent to PP’s
scheduling mechanism (see Sec. ??). Consequently, achieving fast
and energy-efficient inference on robotic IoT remains an open issue.

3.2 Dilemma on Inference Time and Energy
Consumption

Regardless of the complexity of DNN models, layer partitioning
methods consist of three phases: computing earlier DNN layers on
robots, transmitting intermediate results, and completing inference
on the GPU device. Since the GPU device’s computation time is
negligible compared to the other two phases (see Fig. ??) due to the
high computing capabilities of GPU devices, this paper focuses on
the computation phase of robots and the data transmission phase
via robotic IoT.

The data transmission phase can only begin after obtaining the
calculation result of the intermediate layer when the computation
phase on robots is completed, preventing overlap for a single infer-
ence task. PP can only overlap computation and data transmission
phases from different inference tasks, not from the same task [?
]. However, the transmission cost inherent to the PP’s scheduling
mechanism becomes a bottleneck in robotic IoT due to limited band-
width. In our experiments, even with optimal layer partitioning [?
?], such communication cost takes up to 63% of inference time.

To make matters worse, such transmission overhead not only
leads to prolonged inference time but also to high energy consump-
tion during the data transmission phase, referred to as transmission
energy consumption. Our findings reveal that such transmission en-
ergy consumption accounts for nearly one-third of the total energy
consumed during inference (see Sec.??). This is because the device
cannot be put into low-power sleep mode while waiting for the final
inference result from the GPU device, as it has to promptly continue
working when it receives the inference results. Moreover, chips
like CPU, GPU, and memory consume non-negligible power even
when not computing, due to the static power consumption rooted
in transistors’ leakage current [?]. Consequently, both the energy
consumed during the execution of DNN layers on robots, referred
to as robot computation energy consumption, and the transmis-
sion energy consumption resulting from prolonged transmission

New Problems in Distributed Inference for DNN Models on Robotic loT

times substantially impact the overall power consumption of the
inference process in robotic IoT.

Only models with limited transmission overhead can mitigate
the impact of these shortcomings on inference performance. How-
ever, the unstable bandwidth in robotic IoT wireless networks can
cause the transmission time for layer partitioning to vary dramat-
ically, sometimes changing by hundreds of times (see Fig. ??). In
our experiments, even a relatively small model with only 0.84M
parameters still suffers from its significant transmission overhead.
The significant impact of transmission overhead on both inference
time and energy consumption highlights the need for innovative ap-
proaches that can effectively mitigate the transmission bottleneck
in robotic IoT.

3.3 Special Cases

Since layer partitioning methods schedule at the granularity of
model layers, “local computation” and “edge computation” are spe-
cial cases of layer partitioning. “Local computation” refers to placing
the whole layers on the robot when the bandwidth is too low, while
“edge computation” means placing the whole layers on GPU devices
when the bandwidth is sufficient. Local computation avoids the
impact of network transmission on inference time but consumes the
maximum computation energy consumption. On the other hand,
edge computation minimizes computation energy consumption
but requires a high enough bandwidth to ensure the lowest possi-
ble transmission energy consumption and overall inference time.
These two special cases are indispensable for existing methods to
cope with different network conditions, when they are too low or
sufficient, and to address the need for various trade-offs between
inference delay and energy consumption.

In our experiments, we found that the bandwidth conditions
under which the layer partitioning scheme of different models
becomes these special cases vary, and the higher the bandwidth,
the more layers are scheduled to be placed on GPU devices. We
explain the reasons causing different bandwidth conditions for
different models in Sec. ?? with some detailed real-world cases.
The existence of these special cases highlights the importance of
considering the relationship between bandwidth, model structure,
and the resulting trade-offs between inference delay and energy
consumption.

4 EVALUATION

Testbed. The evaluation was conducted on a custom four-wheeled
robot (Fig ??), and a custom air-ground robot(Fig ??). They are
equipped with a Jetson Xavier NX [? | 8G onboard computer that
is capable of Al model inference with local computation resources.
The system runs Ubuntu 20.04 with ROS Noetic and a dual-band
USB network card (MediaTek MT76x2U) for wireless connectiv-
ity. The Jetson Xavier NX interfaces with a Leishen N10P LiDAR,
ORBBEC Astra depth camera, and an STM32F407VET6 controller
via USB serial ports. Both LiDAR and depth cameras facilitate envi-
ronmental perception, enabling autonomous navigation, obstacle
avoidance, and SLAM mapping. The GPU server accepting offloaded
computation tasks from the robot is a PC equipped with an Intel(R)
i5 12400f CPU @ 4.40GHz and an NVIDIA GeForce GTX 2080 Ti

ApPLIED’24, June 17, 2024, Nantes, France

Contrt Baard Wil Wik
(STASIHONETG | | Network cart
g o] Micro LIDAR Module

| Battery | (TFMini Plus)

LbAR
(Leishen N10F)

******* |
| PX4 Autopilot |

(a) Four-wheeled robot (b) Air-ground robot

Figure 3: The detailed composition of the robot platforms

inference | transmission | standby
Power (W) | 13.35 4.25 4.04
Table 1: Power consumption (Watt) of our robot in different
states.

People
Trajectory

Robot
Trajectory

(a) Targeted people (b) Robot moving trajectory
Figure 4: A real-time people-tracking robotic application on
our robot based on a well-known human pose estimation ML
model, Kapao [?].

11GB GPU, connected to our robot via Wi-Fi 6 over 80MHz channel
at 5GHz frequency in our experiments.

Tab. ?? presents the overall on-board energy consumption (ex-
cluding motor energy consumption for robot movement) of the
robot in various states: inference (model inference with full GPU
utilization, including CPU and GPU energy consumption), trans-
mission (communication with the GPU server, including wireless
network card energy consumption), and standby (robot has no tasks
to execute). Notice that different models, due to varying numbers
of parameters, exhibit distinct GPU utilization rates and power
consumption during inference.

We evaluated two real-world environments: indoors (robots
move in our laboratory with desks and separators interfering with
wireless signals) and outdoors (robots move in our campus garden
with trees and bushes interfering with wireless signals, resulting
in lower bandwidth). The corresponding bandwidths between the

ApPLIED’24, June 17, 2024, Nantes, France

Zekai Sun, Xiuxian Guan, Junming Wang, Fangming Liu, and Heming Cui

Model(number Local com- . Transmission time (s) | Inference time (s) | Percentage(%)
. . Environment . . .
of parameters putation time(s) with TP with TP with TP
, indoors 0.698(£0.135) 1.400(0.232) 49.85
MobileNet V3_Small2M) - 0.031(:0.004) outdoors 0.901(0.778) 1.775(x1.370) 51.23
indoors 7.156(£3.348) 3.106(x3.403) 37.95
+
ResNet101(44M) 0.065(0.005) outdoors 8.470(£6.337) 9.356(+6.328) 90.46
indoors 5.152(+4.873) 5.444(+4.831) 70.18
. +0.
VGG19_BN(143M) 0.063(+0.002) outdoors 5.407(£6.673) 5.759(£6.635) 93.70

Table 2: Average transmission time (Second), inference time (Second), percentage that transmission time accounts for of the total
inference time and their standard deviation (+n) with TP on different models in different environments. “Local computation”

refers to placing the whole layers on the robot.

Model(number Environment Power consumption(W) | Energy consumption(J) per inference ‘
of parameters) Local ‘ TP Local ‘ TP
. indoors 6.05(x0.21) | 5.24(x0.19) | 0.3(0.09) 7.33(x1.21)
MobileNet V3_Small@M) | 1oors | 6.05(x0.21) | 5.11(+0.28) | 0.3(0.09) 9.08(+7.0)
indoors 11.27(x0.51) | 4.97(x0.16) | 0.93(x0.19) 40.28(+16.91)
101(44
ResNet101(44M) outdoors | 11.27(x0.51) | 4.9(x0.23) | 0.93(+0.19) 45.8(30.98)
indoors 14.86(+0.43) | 4.88(x0.29) | 1.19(+0.18) 26.55(+23.56)
VGG19_BN(143M) outdoors | 14.86(+0.43) | 4.87(x0.27) | 1.19(+0.18) 28.06(+32.33)

Table 3: Power consumption against time (Watt) and energy consumption per inference (Joule) with standard deviation (+n)
with TP on different models in different environments. “Local” represents “Local computation”

Aerial Control Points

A \" @Ground Control Points

Figure 5: By predicting occlusions in advance, AGRNav [?]
gains an accurate perception of the environment and avoids
collisions, resulting in efficient and energy-saving paths.

robot and the GPU server in indoors and outdoors scenarios are
shown in Fig. ??.

Workload. We evaluated two typical real-world robotic applica-
tions on our testbed: Kapao, a real-time people-tracking application
on our four-wheeled robot (Fig ??), and AGRNav, an autonomous
navigation application on our air-ground robot (Fig ??). These ap-
plications feature different model input and output size patterns:
Kapao takes RGB images as input and outputs key points of small
data volume. In contrast, AGRNav takes point clouds as input and
outputs predicted point clouds and semantics of similar data volume
as input, implying that AGRNav needs to transmit more data during
offloading. And we have verified several models common to mobile
devices on a larger scale to further corroborate our observations
and findings: MobileNet [?], ResNet [?], VGGNet [?], ConvNeXt [?
], RegNet [?].

Notice that in our experiment, the robot continuously captures
the latest images from the camera for inference with a batch size

of 1, precluding the adoption and evaluation of data parallelism
methods.

4.1 Tensor Parallelism

We chose a state-of-the-art tensor parallelism method, DINA [?], as
our baseline; Table ?? reveals that transmission time constitutes 49%
to 94% of total inference time due to all-reduce communication for
each layer, resulting in TP’s inference time being 45.2X to 143.9X
longer than local computation. Although Table ?? indicates lower
power consumption with TP (13.4% to 67.3% less than local compu-
tation, because TP spent much more time on transmission when
have lower power consumption in Tab.??), the extended transmis-
sion times significantly increase energy consumption per inference,
ranging from 28.5X to 62.7X. Since TP significantly extends infer-
ence time, making it impractical for real-world robotic applications
that require real-time control, we did not further evaluate TP in
these contexts.

4.2 Pipeline Parallelism

We selected two SOTA pipeline parallelism methods as baselines:
DSCCS [?], aimed at accelerating inference, and SPSO-GA [?],
focused on optimizing energy consumption. We set SPSO-GA’s
deadline constraints to 1 Hz, the minimum frequency required for
robot movement control. Given our primary focus on inference
time and energy consumption per inference, we disabled pipeline
execution to concentrate solely on assessing the performance of
various layer partitioning methods.

4.2.1 Inference Time.

Kapao. From the results in the upper part of Tab. ??, both SPSO-GA
and DSCCS reduced Kapao’s inference time by 39.69% and 56.92%
indoors and 28.67% and 47.46% outdoors, with DSCCS achieving
28.57% (indoors) and 26.34% (outdoors) lower inference time than

New Problems in Distributed Inference for DNN Models on Robotic loT

ApPLIED’24, Ju

ne 17, 2024, Nantes, France

Model(number Local com- Environment Transmission time (s) Inference time (s) Percentage(%)
of parameters) putation time (s) SPSO-GA | DSCCS SPSO-GA | DSCCS | SPSO-GA | DSCCS
indoors 0.212(+0.085) | 0.204(:0.088) | 0.427(x0.122) | 0.305(x0.113) | 49.69 66.68
Kapao(77M) 0.708(+0.023) outdoors | 0.271(£0.563) | 0.259(0.531) | 0.505(0.573) | 0.372(£0.535) | 53.49 69.46
indoors 0.273(20.166) | 0.133(x0.793) | 0.977(£0.32) | 0.828(%0.646) | 28.04 15.99
+
AGRNav(0.84M) 1.014(+0.034) outdoors | 0.177(x0.762) | 0.089(x0.085) | 0.983(0.759) | 0.888(+0.067) | 17.93 10.02

Table 4: Average transmission time (Second), inference time (Second), percentage that transmission time accounts for of the
total inference time and their standard deviation (+n) of Kapao and AGRNav with different pipeline parallelism offloading
systems and different environments. “Local computation” refers to placing the whole layers on the robot.

Model(number Environment Power consumption(W) Energy consumption(J) per inference
of parameters) Local | SPSO-GA | DSCCS Local | SPSO-GA | DSCCS

Kapao(77M) indoors 15.03(20.63) | 6.21(x2.76) | 6.42(x3.09) | 9.26(x0.2) | 1.95(x0.76) | 1.23(x0.71)

P outdoors | 15.03(£0.63) | 7.91(x4.2) | 8.07(x4.35) | 9.26(x0.2) | 2.92(x4.53) | 1.95(:+4.32)

indoors | 10.82(x1.44) | 6.47(x2.06) | 10.43(x2.4) | 10.97(x0.37) | 2.95(x1.93) | 4.48(x6.71)

AGRNav(0.84M) | ioors 10.82(+1.44) | 8.77(x3.07) | 10.78(x1.47) | 10.97(x0.37) | 4.7(+6.62) | 4.97(0.47)

Table 5: The power consumption against time (Watt) and energy consumption per inference (Joule) with standard deviation
(£n) of Kapao and AGRNav at different baselines and environments. “Local” represents “Local computation”

SPSO-GA. While both systems significantly reduced inference time
via offloading, transmission time accounts for 49.69% to 69.46% of
the whole inference time, indicating that even with SOTA layer par-
titioning, the transmission bottleneck inherent to PP’s scheduling
mechanism cannot be mitigated. The difference between DSCCS
and SPSO-GA can be attributed to their optimization goals: DSCCS
minimizes inference latency, while SPSO-GA minimizes power con-
sumption under deadline constraints.

AGRNav. The performance gain of the two offloading systems
varied for AGRNav, as shown in the lower part of Tab. ??. DSCCS
still reduced inference time by 18.34% and 12.43% in indoors and out-
doors. However, SPSO-GA achieved similar inference time (3.65%
and 3.06% reduction) as local computation both indoors and out-
doors. We will explain and analyze this phenomenon in Sec.??.

Notice that the large standard deviation in transmission time
in outdoors in both offloading systems indicates that bandwidth
fluctuated more frequently and more fiercely outdoors compared
with indoors, which complies with Fig. ??. Additionally, the lower
average bandwidth for outdoors scenarios (see Sec.??) results in
increased transmission and inference times relative to indoor sce-
narios.

4.2.2 Breakdown.

Both SPSO-GA and DSCCS automatically adapt to available band-
width, transitioning to edge computation (placing all DNN layers
on the GPU server) when bandwidth is sufficient, and to local com-
putation (placing all DNN layers on robots) when bandwidth is low.
To better understand how their layer partitioning scheduling varies
with different network conditions and models, we recorded and an-
alyzed the Categories and percentages of various layer partitioning
schedules under different baselines and environments, as detailed
in Fig. ?2.

Local computation and edge computation are special cases of
layer partitioning, with the bandwidth conditions required for each
model to reach these cases varying based on the model structure
and partitioning method used. Analyzing Fig. ?? and Fig. ??, both
SPSO-GA and DSCCS tend to allocate more layers on the robot

Kapao: Offloading Category and Percentage

= H
80

60
40
20

0

o 00(
o\

Percent(%)

offloading category
mmm |ocal computation

partial computation
m== edge computation

(e
oo c\°°
\)\.

o
o> (,(/5 ’6>3 (f:v
& o

offloading system & environment
(a) Categories and percentage of various scheduling for Kapao

Agrnav: Offloading Category and Percentage
100

. 1]
g
$ 60
=
[}
=
o 40
a
offloading category
20 m=m |ocal computation
partial computation
o o X o
& 99\“ of & <&
o> < N)
0" O ©
69(7 o° ng o2

offloading system & environment

(b) Categories and percentage of various scheduling for AGRNav

Figure 6: The layer partitioning scheduling under difference
baselines and environments. “Local computation” refers to
placing the whole layers on the robot when the bandwidth is
too low, “edge computation” means placing the whole layers
on GPU server when the bandwidth is sufficient, and “partial
computation” means placing part of the layers on the robot
and part on GPU server.

ApPLIED’24, June 17, 2024, Nantes, France

Zekai Sun, Xiuxian Guan, Junming Wang, Fangming Liu, and Heming Cui

Model(number Local compu- Environ- Transmission time (s) Inference time (s) Percentage(%)
of parameters) ~ tation time (s) ment SPSO-GA | DSCCS SPSO-GA | DSCCS | SPSO-GA | DSCCS
MobileNet V3_Small .0 o)) indoors | 0.035(0.019) | 0.016(x0.005) | 0.044(0.020) | 0.031(x0.008) | 79.79 | 53.24
(2M) o outdoors | 0.035(0.044) | 0.017(:0.005) | 0.047(x0.037) | 0.033(x0.018) | 50.04 | 51.49
RegNet X 3 2GF | (<010 0pp indoors | 0.049(0.026) [0.033(£0.011) [0.065(+0.028) [0.049(x0.016) |~ 7625 [64.17
(15M) T outdoors | 0.049(0.055) | 0.032(0.032) | 0.069(:0.050) | 0.051(0.030) | 53.23 | 44.50
ResNet101 indoors | 0.054(x0.451) | 0.033(x0.010) | 0.072(x0.453) | 0.050(x0.016) | 75.64 | 57.37
0.060(0.023)
(44M) outdoors | 0.052(+0.064) | 0.033(:0.036) | 0.077(0.059) | 0.054(£0.034) | 51.54 | 42.48
ConvNeXt Base 17 ggq ndo0rs [0.035(x0.018) [10.020(20.000) [0.044(0.019) [0.082(x0.009) [75.39 [49.37
(88M) o outdoors | 0.032(+0.038) | 0.020(0.022) | 0.045(:0.033) | 0.034(x0.019) | 52.82 | 35.63
ConvNeXt Large o1 o 0gs) indoors [10.033(20.017) | 0.023(0.008) [0.046(x0.019) | 0.035(z0.013) [7296 | 6268
(197M) T outdoors | 0.032(x0.038) | 0.023(0.024) | 0.054(:0.040) | 0.041(x0.028) | 48.94 | 43.96
RegNet_Y_128GF indoors | 0.076(+0.289) | 0.041(x0.024) | 0.305(0.382) | 0.100(x0.035) | 23.58 | 40.76
0.139(0.016)
(644M) outdoors | 0.171(0.602) | 0.016(:0.055) | 0.432(:0.615) | 0.117(0.242) | 3239 9.41

Table 6: Average transmission time (Second), inference time (Second), percentage that transmission time accounts for of the
total inference time and their standard deviation (+n) of common Al models in different environments with different offloading

systems. “Local computation” refers to placing the whole layers on the robot.

Model(number . Power consumption(W) Energy consumption(]) per inference
Environment

of parameters) Local | SPSO-GA | DSCCS Local | SPSO-GA | DSCCS
MobileNet_V3_Small indoors 6.131(+0.061) | 5.448(+0.168) | 5.658(+0.085) | 0.202(+0.002) | 0.241(+0.107) | 0.174(+0.046)
(2M) outdoors | 6.131(x0.061) | 5.567(x0.273) | 5.557(+0.186) | 0.202(£0.002 | 0.260(£0.204) | 0.185(:0.099)
RegNet_X_3_2GF indoors 8.208(+0.140) | 5.490(+0.178) | 5.714(+0.342) | 0.492(+0.008) | 0.356(+0.156) | 0.278(+0.091)
(15M) outdoors | 8.208(£0.140) | 5.878(0.659) | 6.041(0.624) | 0.492(+0.008) | 0.406(£0.295) | 0.311(0.184)
ResNet101 indoors 11.851(+0.404) | 5.457(+0.240) | 5.953(+0.789) | 0.711(%0.024) | 0.390(+£2.471) | 0.298(+0.094)
(44M) outdoors | 11.851(+0.404) | 6.179(x1.083) | 6.431(+1.060) | 0.711(0.024) | 0.478(£0.364) | 0.349(£0.216)
ConvNeXt_Base indoors 15.335(+0.273) | 5.507(+0.358) | 7.713(+2.613) | 0.721(+0.013) | 0.241(+0.103) | 0.250(+0.069)
(88M) outdoors | 15.335(£0.273) | 7.638(3.297) | 9.148(+3.338) | 0.721(x0.013) | 0.346(£0.254) | 0.307(+0.171)
ConvNeXt_Large indoors 15.403(+0.082) | 5.518(+0.638) | 6.604(+2.860) | 0.786(+0.004) | 0.251(+0.104) | 0.230(+0.088)
(197M) outdoors | 15.403(£0.082) | 8.400(x4.345) | 8.895(+4.505) | 0.786(£0.004) | 0.452(£0.339) | 0.366(£0.248)
RegNet_Y_128GF indoors 15.430(+0.020) | 5.384(+1.071) | 6.151(+2.155) | 2.145(+0.003) | 1.642(+0.327) | 0.615(+0.216)
(644M) outdoors | 15.430(£0.020) | 6.361(£2.349) | 9.127(+4.724) | 2.145(+0.003) | 2.748(+1.015) | 1.068(0.553)

Table 7: The power consumption against time (Watt) and energy consumption per inference (Joule) with standard deviation
(£n) of common Al models at different baselines and environments. “Local” represents “Local computation”

for AGRNav. When comparing indoor and outdoor scenarios in
Fig. ??,itis evident that higher bandwidth leads to more layers being
scheduled on GPU server. Additionally, when comparing SPSO-GA
and DSCCS in Fig. ??, DSCCS, which focuses on optimizing energy
consumption, tends to place fewer layers on the robot to reduce
computation energy consumption.

In summary, the conditions under which layer partitioning schemes
make these special cases are influenced by multiple factors: model
structure, and the trade-offs between inference delay and energy
consumption. And the higher the bandwidth, the more layers are
scheduled to be placed on GPU server.

4.2.3 Energy Consumption.

Kapao. From the results in the upper part of Tab. ??, DSCCS
consumed 3.38% and 2.02% more power per second than SPSO-GA
indoors and outdoors due to more layers placed on robots shown
in Fig. ??. However, SPSO-GA consumed 58.54% and 49.74% more
energy overall to process a frame than DSCCS because it only aims
at minimizing the power consumption against time at the cost of
possibly prolonged inference time.

AGRNav. From the results in the lower part of Tab. ??, DSCCS
consumed 61.21% and 22.92% more energy per second than SPSO-
GA indoors and outdoors (Tab. ??), while DSCCS consumed 34.15%
and 5.43% more energy to process a frame than SPSO-GA. SPSO-
GA’s advantages in power consumption aganist time shrinks in
energy consumption per inference due to prolonged inference time.

4.2.4 Validation on a larger range of models.

We evaluated PP across a broad range of models with varying
parameter counts (from 0.84M to 644M, as detailed in Tab. ?? and
Tab. ??), which are commonly used in mobile devices. Our findings
confirm that transmission time constitutes a significant portion of
the total inference time in robotic IoT when using PP. The inherent
transmission overhead of PP’s scheduling mechanism significantly
wastes both inference time and energy.

4.3 Possible Solutions

To address the transmission overhead issue of PP, approaches that
can reduce or overlap communication costs within a single infer-
ence task appear to be viable solutions. Given the requirement to
maintain the integrity of the final inference results, intermediate

New Problems in Distributed Inference for DNN Models on Robotic loT

results cannot be altered during transmission. Consequently, only
lossless compression methods [?] can be utilized to reduce the
transmission volume.

Regarding the overlapping of communication costs within a sin-
gle inference task, since transmission time constitutes a significant
portion of the total inference time (approximately half) in exist-
ing PP’s layer partitioning, a novel parallel method that overlaps
the computation and transmission phases has significant poten-
tial for optimizing and speeding up inference time. Furthermore,
it is essential to recognize that transmission energy consumption
encompasses the energy used by the device during the data trans-
mission phase, not merely the energy expended for the transmission
itself (such as that by the wireless network card). The comparison
of transmission and standby energy consumption in Tab. ?? also
indicates that wireless network cards consume only 0.21W during
our experiments. This suggests that overlapping the two phases
will not significantly increase the energy consumption during the
robot computation phase but will reduce the robot’s waiting time
for the final inference result during the data transmission phase,
thereby decreasing overall energy consumption.

In summary, a new parallel method that overlaps the computa-
tion and transmission phases within the existing PP’s layer parti-
tioning framework has the potential to address the shortcomings
of current distributed inference approaches. By implementing this
method, we can achieve faster and more energy-efficient inference,

ApPLIED’24, June 17, 2024, Nantes, France

facilitating more effective deployment of DNN models on robotic
IoT.

5 CONCLUSION

In this paper, we explored the problems that hinder the application
of existing parallel methods for distributed inference on robotic IoT,
including the failure of data parallelism due to small batch sizes, the
unacceptable communication overhead of tensor parallelism caused
by all-reduce communication, and the significant transmission bot-
tlenecks inherent to pipeline parallelism’s scheduling mechanism.
By raising awareness of these issues, we aim to stimulate research ef-
forts towards developing novel parallel methods that address these
problems. We envision that fast and energy-efficient inference will
foster the deployment of diverse robotic tasks on real-world robots
in the field.

ACKNOWLEDGEMENTS

We thank all anonymous reviewers for their helpful comments.
The work is supported in part by National Key R&D Program
of China (2022ZD0160200), National Key R&D Program of China
(No0.2023YFB4503902), HK RIF (R7030-22), HK ITF (GHP/169/20SZ),
the Huawei Flagship Research Grants in 2021 and 2023, and HK RGC
GRF (Ref: HKU 17208223), the HKU-SCF FinTech AcademyR&D
Funding Schemes in 2021 and 2022, the HKU-CAS Joint Labora-
tory for Intelligent System Software, and the Shanghai Artificial
Intelligence Laboratory.

