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Abstract001

Fine-tuning Large Language Models (LLMs)002
with multimodal encoders on modality-specific003
data expands the modalities that LLMs can han-004
dle, leading to the formation of Multimodal005
LLMs (MLLMs). However, this paradigm006
heavily relies on resource-intensive and in-007
flexible fine-tuning from scratch with new008
multimodal data. In this paper, we pro-009
pose MMER (Multi-modality Expansion and010
Retention), a training-free approach that in-011
tegrates existing MLLMs for effective multi-012
modal expansion while retaining their origi-013
nal performance. Specifically, MMER reuses014
MLLMs’ multimodal encoders while merging015
their LLM parameters. By comparing origi-016
nal and merged LLM parameters, MMER gen-017
erates binary masks to approximately separate018
LLM parameters for each modality. These de-019
coupled parameters can independently process020
modality-specific inputs, reducing parameter021
conflicts and preserving original MLLMs’ fi-022
delity. MMER can also mitigate catastrophic023
forgetting by applying a similar process to024
MLLMs fine-tuned on new tasks. Extensive ex-025
periments show significant improvements over026
baselines, proving that MMER effectively ex-027
pands LLMs’ multimodal capabilities while re-028
taining 99% of the original performance, and029
also markedly mitigates catastrophic forgetting.030

1 Introduction031

Large Language Models (LLMs) (Touvron et al.,032

2023; Wu et al., 2023) have recently become a033

cornerstone in artificial intelligence due to their034

exceptional performance. Building on LLMs, re-035

searchers (Li et al., 2023a; Liu et al., 2023) inte-036

grate encoders for other modalities and use exten-037

sive modality-text data for alignment. These syn-038

thesis are then fine-tuned to develop Multimodal039

LLMs (MLLMs), which excel at processing multi-040

modal inputs. This paradigm has led to the success-041

ful creation of numerous MLLMs across various042

modalities (Wu et al., 2024; Jiang et al., 2023).043
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Figure 1: The key ideas of MMER. Multi-Modality Ex-
pansion creates a versatile model from existing MLLMs
via a training-free, extensible process. Multi-Modality
Retention reconstructs original or new task MLLMs to
retain performance and mitigate catastrophic forgetting.

Most MLLMs specialize in dual modalities, in- 044

cluding vision-oriented LLMs like LLaVA (Liu 045

et al., 2023) and InternVL (Chen et al., 2024b), as 046

well as video LLMs (Lin et al., 2023; Maaz et al., 047

2024) and audio LLMs (Chu et al., 2023; Desh- 048

mukh et al., 2023). Despite these advancements, 049

there is a growing impetus to expand the modali- 050

ties MLLMs can handle for diverse applications. A 051

straightforward method involves adding multiple 052

new modality encoders (Chen et al., 2023a; Lyu 053

et al., 2023) or employing a unified multimodal 054

encoder (Han et al., 2024), followed by re-fine- 055

tuning the MLLMs with fresh modality-text data. 056

However, this method is resource-intensive and 057

lacks flexibility, as it requires generating or acquir- 058

ing high-quality multimodal instruction data (Zhao 059

et al., 2023) and fine-tuning from scratch. 060

To overcome the aforementioned limitations, re- 061

searchers have explored model merging for multi- 062

modal expansion in MLLMs (Shukor et al., 2023; 063

Panagopoulou et al., 2024). For instance, Chen 064

et al. 2024a proposed NaiveMC, a basic, training- 065

free framework that merges the LLMs of multi- 066
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ple MLLMs and combines their modality-specific067

encoders into the merged LLM. They further in-068

troduced the DAMC framework, which retrains069

MLLMs by separating modality parameters from070

language model parameters to mitigate parameter071

conflicts in the merged LLM. However, these two072

frameworks encounter a trade-off: NaiveMC is073

train-free but delivers lower performance, whereas074

DAMC requires training but yields better results.075

In this paper, we propose a training-free ap-076

proach named MMER (Multi-Modality Expansion077

and Retention), which enables multimodal expan-078

sion while bypassing the above trade-off and retains079

the original performance (See Figure 1). First, we080

merge the task vectors (Ilharco et al., 2023), which081

represent the difference between the fine-tuned and082

pre-train LLM parameters, into a merged task vec-083

tor. Next, by comparing the Directional Congru-084

ence and Dominant Significance between the origi-085

nal and merged task vectors, we construct modality-086

specific binary masks. These masks can approxi-087

mately identify and decouple the original modality-088

specific parameters retained in the merged task vec-089

tor. This strategy allows the merged MLLM to inde-090

pendently process non-textual modality data, using091

its decoupled parameters, thereby significantly re-092

ducing interference from other modalities.093

Furthermore, by re-adding a decoupled modality094

task vector into the base LLM parameters and in-095

tegrating its corresponding encoder, we can recon-096

struct the near-original MLLMs. This strategy can097

retain the original modalities’ performance while098

saving storage space. Remarkably, since our MMER099

approach is scalable, applying it to MLLMs fine-100

tuned on new tasks, along with multiple original101

MLLMs, yields a novel effect: effectively miti-102

gating catastrophic forgetting. This approach en-103

hances performance on new tasks without compro-104

mising previous ones by decoupling the new task’s105

parameters from the original ones, thus preventing106

damage to the original parameters.107

We demonstrated the effectiveness of MMER by108

composing four MLLMs (i.e., vision, audio, video,109

and point cloud) and conducted extensive exper-110

iments. In multimodal tasks like MCUB (Chen111

et al., 2024a), MMER significantly outperforms var-112

ious baselines, confirming its ability to expand113

LLMs’ multimodal capabilities without additional114

training. Moreover, we evaluated MLLMs recon-115

structed by MMER on fourteen dual-modal tasks116

spanning four modalities paired with text. The117

results reveal that they retain 99% of their origi-118

nal performance. Lastly, MMER proved resistant 119

to catastrophic forgetting in single-task and cross- 120

modal multi-tasks scenarios, effectively adapting 121

to new tasks without undermining previous ones. 122

Our work makes several contributions: 123

• We propose MMER, a training-free approach 124

for seamless multimodal expansion of LLMs 125

through parameter merging and decoupling. 126

• We demonstrate two additional practical appli- 127

cations of the MMER approach: retaining the 128

performance of original MLLMs and mitigat- 129

ing catastrophic forgetting in MLLMs. 130

• We conduct extensive and rigorous experi- 131

ments on various multimodal tasks across 132

three scenarios, with confirm the effectiveness 133

of the MMER approach. 134

2 Related Work 135

Multimodal Large Language Models. Substan- 136

tial researches (Dai et al., 2023; Achiam et al., 137

2023) is dedicated to developing LLMs for multi- 138

modal inputs. Vision LLMs (Alayrac et al., 2022; 139

Li et al., 2023a) excel in vision-language tasks by 140

connecting visual encoders to LLMs, sparking a 141

surge in dual-modality MLLMs. Other modalities, 142

like audio and video, quickly followed suit (Ruben- 143

stein et al., 2023; Lin et al., 2023). Meanwhile, 144

researchers explored unifying multiple modalities 145

into a single LLM. ImageBind-llm (Han et al., 146

2023) connects a multimodal encoder like Image- 147

Bind (Girdhar et al., 2023) to an LLM but relies 148

solely on image-text data. OneLLM (Han et al., 149

2024) improves this by aligning all modalities 150

with language. However, these methods cannot 151

expand modalities due to the encoders have fixed 152

input types. Other approaches connect multiple 153

modality-specific encoders to an LLM, as seen in 154

X-LLM (Chen et al., 2023a), MACAW-LLM (Lyu 155

et al., 2023), which integrate encoders for vision, 156

video, and audio. However, these methods require 157

high-quality multimodal data for joint training and 158

still struggle with modality expansion. In contrast, 159

MMER provides an efficient, training-free solution 160

for seamless multimodal expansion in LLMs. 161

Model Merging and Model Composition. 162

Model merging (Yang et al., 2024) can improve 163

single-task performance (Gupta et al., 2020), out- 164

of-distribution generalization (Arpit et al., 2022), or 165

combine the capabilities of multiple models (Wan 166

et al., 2024). A basic method, TA (Ilharco et al., 167

2023) merges models by applying arithmetic opera- 168
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Figure 2: The overview of MMER, considering only the Vision and Point Cloud modalities for clarity. Each block
corresponds to the same weight matrix, with empty blocks denoting zero value. “≈” signifies similar performance.

tions on delta fine-tuned weights (i.e., task vectors),169

showing that such operations can yield comparable170

functional responses. Many subsequent methods171

have built upon this foundation. TIES (Yadav et al.,172

2023) mitigates interference during merging by173

pruning redundant parameters and resolving sign174

conflicts, while DARE (Yu et al., 2024) achieves175

the same by randomly dropping and scaling pa-176

rameters in a preprocessing step. Moreover, Ortiz-177

Jimenez et al. 2023 established the theoretical foun-178

dation for TA, showing that weight disentangle-179

ment is key to its success. Model merging further180

applies to multimodal models. Sundar et al. 2024181

explored multimodal transformers merging for spe-182

cific tasks. Model Tailor (Zhu et al., 2024b) merges183

MLLMs to mitigate catastrophic forgetting. How-184

ever, they do not explore the merging of MLLMs185

across modalities. To address this, the NaiveMC186

and DAMC frameworks (Chen et al., 2024a) merge187

models to create a unified MLLM that inherits mul-188

tiple modality capabilities, enabling seamless ex-189

pansion. However, one requires additional training,190

while the other delivers subpar performance. In191

contrast, MMER enhances the multimodal expansion192

capabilities of MLLMs without extra training while193

retaining original performance and demonstrating194

resistance to catastrophic forgetting. Detailed com-195

parison with related methods is in Appendix A.196

3 Methodology 197

In MMER, we first merge the LLM parameters 198

{θ1, θ2, . . . , θn} from multiple MLLMs, all fine- 199

tuned from the same LLM θpre, into a unified LLM. 200

However, such a merged model is prone to interfer- 201

ence between modality-specific parameters, which 202

can degrade the performance of representations. To 203

handle this, we adopt a training-free parameter de- 204

coupling method that enhances the multimodal per- 205

formance of the merged LLM while retaining the 206

original performance. This is achieved by approx- 207

imately decoupling modality-specific parameters 208

within the merged parameter, ensuring independent 209

processing of non-textual modality inputs. A visual 210

workflow of MMER is depicted in Figure 2. 211

3.1 Multimodal Parameter Merging and 212

Decoupling 213

Since TA (Ilharco et al., 2023) showed the effective- 214

ness of arithmetic operations on task vectors, which 215

is further theoretically supported by Ortiz-Jimenez 216

et al. 2023, we apply these operations for parame- 217

ter merging and decoupling. Specifically, we com- 218

mence by employing the advanced model merg- 219

ing technique Ties (Yadav et al., 2023) to merge 220

{θ1, θ2, . . . , θn}. Ties first extracts the task vectors 221

for each MLLM as τi,pre = θi − θpre, then refines 222

them by selecting the TopK% absolute values to 223
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filter out non-essential parameters. This results224

in sparse task vectors τi, which are then merged225

base on sign consistency to generate the merged226

task vector τ∗ = merge(
∑n

i=1 τi). Finally, the fi-227

nal merged LLM parameter is θ∗ = θpre + α · τ∗,228

where α > 0 is a scaling factor calibrated by the229

validation set from target tasks. If these sets are230

unavailable, α is determined based on the model’s231

general performance across tasks of each modality.232

Previous studies (Panigrahi et al., 2023; Wang233

et al., 2024) show that most of the information from234

the task vectors is retained and embedded in the235

merged task vector τ∗. By comparing the original236

task vectors τi with the merged task vector τ∗, we237

can identify relevant modality-specific parameter238

subsets from τ∗. This enables the construction of239

modality-specific binary masks mi to decouple and240

approximate each original task vectors mi ◦ τ∗.241

These masks filter out irrelevant parameters and242

reconstruct the original model parameters θ̂i:243

θ̂i = θpre +mi ◦ τ∗ ≈ θi (1)244

We construct the masks mi by minimizing the245

Manhattan distance ℓ∗1 between the reconstructed246

model θ̂i and the LLM θi of original MLLMs:247

argmin
mi∈{0,1}P

∣∣∣θ̂i − θi

∣∣∣ = argmin
mi∈{0,1}P

|mi ◦ τ∗ − τi|248

249

= argmin
mi∈{0,1}P

P∑
p=1

∣∣∣m(p)
i ◦ τ (p)∗ − τ

(p)
i

∣∣∣ (2)250

where P represents the total number of parame-251

ters. The rationale for using the Manhattan distance252

is analyzed in Appendix D.1. If the sign of τ (p)i253

is inconsistent with that of τ (p)∗ , the masks m
(p)
i254

is set to 0 to avoid directional conflict. This step255

is referred to as Directional Congruence. Con-256

versely, when the sign of τ (p)i aligns with τ
(p)
∗ and257 ∣∣∣τ (p)i

∣∣∣ ≥
∣∣∣τ (p)∗ − τ

(p)
i

∣∣∣, i.e.,
∣∣∣τ (p)i

∣∣∣ ≥ 50%
∣∣∣τ (p)∗

∣∣∣,258

this indicates that τ (p)i is a dominant component259

of the merged parameter τ (p)∗ . Thus, τ (p)∗ can be260

approximated as τ
(p)
i , so m

(p)
i is set to 1, which261

we refer to as Dominant Significance. We further262

introduce a scaling factor λi to refine this selection263

process, accommodating the varying numbers and264

modalities of original MLLMs, where a smaller λi265

selects more parameters. The selection of λi fol-266

lows the same principle as α, enabling the modality-267

specific inputs to be processed in parallel and inde-268

pendently. The final mask mi is constructed by the269
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Figure 3: Details of MMER’s dynamic processing.
and represent the Hadamard product and addition.

following formula: 270

mi =


1 if |τ (p)i | ≥ λi · 50%|τ (p)∗ | and

sign(τ (p)i ) = sign(τ (p)∗ )

0 otherwise

(3) 271

3.2 The MMER Approach 272

We now comprehensively explain how the multi- 273

modal parameter merging and decoupling method 274

enables multi-modality expansion, retention and 275

addresses catastrophic forgetting in MLLMs. 276

3.2.1 Multi-Modality Expansion 277

Typical MLLMs consist of modality-specific com- 278

ponents (i.e., multimodal encoders and alignment 279

layers) and a base fine-tuned LLM. Our MMER ap- 280

proach disentangling these components, then ap- 281

plies the parameter merging and decoupling strat- 282

egy to the fine-tuned LLMs of multiple MLLMs, 283

producing a merged task vector τ∗, the pre-trained 284

LLM parameter θpre, and n modality-specific bi- 285

nary masks mi. The modality-specific components, 286

including their weights, are reused directly, en- 287

abling the merged MLLM to seamlessly process 288

all original modalities without losing functionality. 289

As depicted in Figure 3, upon receiving multi- 290

modal data, MMER respectively encodes them into 291

representation inputs X = [XM1 , . . . , XMn , Xt], 292

where XMi and Xt represent the modality-specific 293

sequences and text sequences. MMER then dynami- 294

cally decouples the approximate modality-specific 295

parameters θpre +mi ◦ τ∗. This ensures that non- 296

textual modality representations are processed in- 297

dependently with their respective parameters. Text 298

representations, on the other hand, are processed 299

with the merged parameter θpre + m ◦ τ∗, where 300

m is the average of all masks mi. For exam- 301

ple, when representations progress to the attention 302
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mechanism at the l-th layer, MMER decouples the303

modality-specific parameter from WQ
∗,l, the queries304

weights in the l-th layer from τ∗, then:305

Ql =
[
XM1,l

(
mQ

1,l ◦W
Q
∗,l +WQ

pre,l

)
,306

. . . , Xt,l

(
mQ

l ◦WQ
∗,l +WQ

pre,l

)]
(4)307

where WQ
pre,l denotes the queries weights in the308

l-th layer form θpre. Afterward, MMER sequentially309

decouples the modality-specific parameters for the310

keys and values in the l-th layer, and compute Kl311

and Vl. Finally, we carry out attention operation:312

Xa
l = Attention(Ql,Kl,Vl) (5)313

314
[Xa

M1,l, . . . , X
a
Mn,l, X

a
t,l] = Split(Xa

l ) (6)315

Please note that the output representation should316

be partitioned by modality to match the input form.317

Consequently, the final output of the attention318

mechanism at the l-th layer is:319

[Xo
M1,l, . . . , X

o
t,l] =

[
Xa

M1,l

(
mO

1,l ◦WO
∗,l +WO

pre,l

)
320

321
, . . . , Xa

t,l

(
mO

l ◦WO
∗,l +WO

pre,l

)]
(7)322

This procedure alleviates parameter conflicts323

across modalities, ensuring the merged MLLM re-324

tains fidelity when processing multimodal data.325

3.2.2 Multi-modality Retention326

Model merging and NaiveMC exhibit performance327

degradation (See Table 2) when handling modality-328

specific original tasks due to discrepancies between329

merged and original model parameters. However,330

MMER circumvents this issue by approximately re-331

constructing the original MLLMs. This process332

involves decoupling the modality-specific task vec-333

tor mi ◦ τ∗, adding it to the pre-trained LLM θpre334

to obtain the restored LLM θ̂i = θpre + mi ◦ τ∗,335

and then integrating the corresponding modality-336

specific components to reconstruct the final MLLM.337

This strategy effectively mitigates parameter inter-338

ference and retains original performance.339

3.2.3 Mitigating Catastrophic Forgetting340

Typically, fine-tuning MLLMs on new data im-341

proves performance on new tasks but often causes342

catastrophic forgetting on previous ones (Good-343

fellow et al., 2013). Drawing on the insight of344

Multi-modality Retention, MMER can additionally345

mitigate catastrophic forgetting. We first fine-tune346

the corresponding original MLLM on the new tasks.347

Next, we apply the parameter merging and decou- 348

pling method to the fine-tuned MLLM, alongside 349

all original MLLMs, generating a new merged task 350

vector and binary masks. Finally, we reconstruct 351

the corresponding MLLM in a targeted manner to 352

handle different tasks. This enables MMER to ef- 353

fectively adapt to new tasks without compromising 354

previous ones, mitigating catastrophic forgetting. 355

4 Experiments Setup 356

4.1 Implementation 357

We explored MMER across four MLLMs: Vision, 358

Audio, Video, and Point Cloud LLMs. To ensure 359

fairness and comparability, we fine-tuned these four 360

MLLMs in the same environment, each based on 361

Vicuna-7B-v1.5 (Zheng et al., 2023), following 362

previous works (Chen et al., 2024a; Panagopoulou 363

et al., 2024). Details on experimental hyperparame- 364

ters and fine-tuning can be found in Appendix B.2. 365

We evaluated performance based on evaluation 366

scores or accuracy and performance retention, the 367

latter as defined in Appendix B.1. 368

4.2 Baseline Methods 369

We compared MMER with training-free methods: 370

NaiveMC (Chen et al., 2024a), TA (Ilharco et al., 371

2023), and TIES (Yadav et al., 2023), where TA 372

and TIES can substitute the merging strategy of 373

NaiveMC for better performance. DARE (Yu et al., 374

2024) was integrated with these methods as it can 375

complements them. For multi-modality expan- 376

sion experiments, we included training-based base- 377

lines: ImageBind-LLM (Han et al., 2023) and X- 378

InstructBLIP (Panagopoulou et al., 2024). 379

4.3 Datasets and Tasks 380

In multi-modality expansion experiments, we eval- 381

uated multimodal tasks, including MCUB (Chen 382

et al., 2024a), MUSIC-AVQA (Li et al., 2022), 383

and ModelNet40 (Wu et al., 2015) with images. 384

For multi-modality retention experiments, we as- 385

sessed fourteen dual-modal tasks spanning four 386

modalities paired with text. Vision tasks include 387

VQAv2 (Goyal et al., 2017), GQA (Hudson and 388

Manning, 2019), TextVQA (Singh et al., 2019), 389

VizWiz (Gurari et al., 2018), ScienceQA (Lu 390

et al., 2022), POPE (Li et al., 2023b), and OK- 391

VQA (Marino et al., 2019). Audio tasks cover 392

TUT (Mesaros et al., 2017), VocalSound (Gong 393

et al., 2022), and Clotho (Drossos et al., 2020). 394

Video tasks include MSRVTT (Xu et al., 2016) and 395

5



Task (→) ModelNet40 MUSCI-AVQA MCUB
Method (↓) PI-T IA-T VI-T VA-T AVI-T AVI-T AVP-T AIP-T VIP-T AVIP-T

Avg.

–Training-based Multimodal Baselines

ImageBind-LLM(Han et al., 2023) 39.86 36.54 38.76 39.72 38.16 35.20 31.40 33.40 31.80 32.93 35.51

X-InstructBLIP[ECCV24] (Panagopoulou et al., 2024) 57.93 40.71 41.23 48.34 47.39 41.40 25.20 21.20 29.40 27.94 37.04

–Training-free Model Merging Methods

NaiveMC[ACL24] (Chen et al., 2024a) 60.53 39.31 47.65 47.40 49.64 53.64 56.28 60.53 54.60 59.16 53.23

TA[ICLR23] (Ilharco et al., 2023) 62.04 40.22 47.97 46.70 49.93 53.44 56.28 63.36 55.40 59.72 53.90

TIES[NeurIPS23] (Yadav et al., 2023) 61.74 43.27 49.27 48.60 51.19 53.64 55.47 61.74 54.60 58.55 54.10

NaiveMC (w/ DARE[ICML24] (Yu et al., 2024)) 60.32 39.78 47.98 47.67 49.89 53.64 56.68 60.73 54.80 59.53 53.46

TA (w/ DARE) 62.75 40.46 47.98 46.92 50.27 54.25 56.48 64.17 55.40 60.08 54.27

TIES (w/ DARE) 61.96 43.78 49.54 48.98 51.36 54.25 55.87 62.55 55.20 59.06 54.57

MMER (ours) 62.15 47.25 51.27 51.77 53.54 56.48 59.31 65.59 56.00 61.63 56.82

Table 1: Accuracy (%) on multimodal tasks with various combinations of video (V), image (I), audio (A), point
cloud (P), and text (T) inputs. Optimal results are in bold, while sub-optimal results are underlined.

Task (→) 2 Point Tasks 3 Audio Tasks 2 Video Tasks 7 Image Tasks Trimmed Avg.

Method (↓) Score (%) / Acc. (%) Score (%) / Acc. (%) Acc. (%) Acc. (%) Score (%) / Acc. (%)

Original MLLMs (Zero-shot) 23.15 / 21.27 25.30 / 24.71 39.79 62.23 24.23 / 51.01

NaiveMC [ACL2024] (Chen et al., 2024a) 22.65 (97.8) / 20.49 (96.3) 24.59 (97.2) / 30.65 (124.8) 36.92 (93.0) 52.56 (83.6) 23.62 (97.5) / 44.59 (88.3)

TA [ICLR23] (Ilharco et al., 2023) 22.96 (99.2) / 21.02 (98.8) 24.68 (97.5) / 31.88 (129.8) 37.57 (94.5) 54.89 (87.5) 23.82 (98.3) / 46.23 (91.0)

TIES [NeurIPS23] (Yadav et al., 2023) 22.82 (98.6) / 20.83 (97.9) 24.79 (98.0) / 32.15 (130.9) 37.81 (95.1) 54.10 (86.2) 23.80 (98.3) / 45.96 (90.6)

NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 22.83 (98.6) / 20.77 (97.6) 24.72 (97.7) / 31.62 (128.8) 37.63 (94.4) 53.61 (85.3) 23.78 (98.1) / 45.62 (89.8)

TA (w/ DARE) 23.04 (99.5) / 21.25 (99.9) 24.82 (98.1) / 32.44 (132.0) 37.52 (94.4) 55.47 (88.4) 23.95 (98.8) / 46.50 (91.4)

TIES (w/ DARE) 22.76 (98.3) / 20.98 (98.6) 24.92 (98.5) / 33.02 (134.4) 38.00 (95.6) 54.73 (87.2) 23.84 (98.4) / 46.37 (91.4)

MMER (ours) 23.14 (99.9) / 22.49 (105.7) 25.20 (99.6) / 38.51 (155.6) 39.28 (98.5) 62.40 (100.3) 24.17 (99.8) / 50.84 (99.4)

Table 2: Results of multi-modality retention experiments. The performance retention is shown in parentheses.
“Trimmed Avg.” represents the average result obtained after excluding three point or audio classification tasks.

MSVD (Chen and Dolan, 2011), and point tasks396

focus on ModelNet40 (Wu et al., 2015) and Obja-397

verse (Deitke et al., 2023a). We evaluated MMER’s398

resilience to catastrophic forgetting on two new399

tasks, vision task Flickr30k (Young et al., 2014)400

and audio task Clotho-AQA (Lipping et al., 2022).401

5 Main results402

Results on Multi-Modality Expansion. As shown403

in Table 1 , we observe the following: (i) Ad-404

vanced training-free model merging methods im-405

prove the NaiveMC framework’s performance, sug-406

gesting their effective application to the merging of407

MLLMs–a previously unexplored area. This also408

suggests considerable parameter conflicts in the409

merged MLLM, as these methods primarily focus410

on mitigating conflicts among merging parameters.411

(ii) Our MMER approach significantly outperforms412

NaiveMC across all input combinations and tasks,413

demonstrating its effectiveness in extending multi-414

modal capabilities and enhancing merged MLLMs’415

ability to manage modality combinations without416

additional training. (iii) Furthermore, MMER out-417

performs various baselines on nearly all tasks. This418

indicates that directly decoupling parameters after419

merging is more effective than merely reducing 420

conflicts during the merging process. Lastly, the 421

results for two additional multimodal tasks and the 422

original MLLMs are included in Appendix E.2. 423

Results on Multi-Modality Retention. The 424

results in Table 2, reveal the following: (i) Interest- 425

ingly, all methods show notable improvements on 426

specific audio and point tasks. This likely due to 427

these tasks are classification-based, whereas others 428

involve captioning or QA tasks. The original audio 429

and point LLMs, not fine-tuned for classification 430

tasks, fail to follow instructions leading to poorer 431

performance. However, parameter merging may 432

unlock their instruction-following ability, as the 433

training data for other MLLMs included similar in- 434

structions. A detailed analysis is in Appendix D.3. 435

For fairer comparison, we also provide average 436

performance trimming these tasks. (ii) Although 437

NaiveMC enables multimodal expansion for han- 438

dling multimodal tasks, its performance on original 439

tasks substantially lags behind the original MLLMs. 440

While varied model merging methods can some- 441

what alleviate this decline, the gap remains notable. 442

In contrast, MMER nearly retains the original perfor- 443

mance. For instance, MMER achieves 99% perfor- 444
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Previous Tasks New Tasks
Task (→)

2 Point tasks 3 Audio tasks 2 Video tasks 7 Image tasks 3 Multimodal tasks Clotho-AQA Flickr30k

Baseline (↓) Score / Acc. Score / Acc. Acc. Acc. Acc. Acc. Score

Original MLLMs 23.15 / 21.27 25.30 / 24.71 39.79 62.23 - 49.40 51.26

Fine-tune on Clotho-AQA - 19.82 / 12.31 (↓) - - - 57.80 (↑) -

Fine-tune on Flickr30k - - - 57.25 (↓) - - 57.71 (↑)

MMER 23.14 / 22.49 25.20 / 38.51 39.28 62.40 56.82 49.28 51.00

MMER-Clotho-AQA 22.95 / 21.87 25.12 / 38.23 (∼) 39.17 62.20 56.53 57.71 (↑) 50.94

MMER-Flickr30k 23.05 / 22.03 24.96 / 37.68 38.90 62.27 (∼) 56.44 48.94 57.08 (↑)

MMER-Clotho-AQA+Flickr30k 22.82 / 21.56 24.88 / 37.69 (∼) 38.53 61.94 (∼) 55.89 57.52 (↑) 56.72 (↑)

Table 3: Results on previous and new tasks in both single-task and cross-modal multi-task scenario. MMER-xx
refers to merging the MLLM fine-tuned on the new task xx into MMER. MMER-Clotho-AQA+Flickr30k denotes the
merging of both the audio LLM fine-tuned on Clotho-AQA and the vision LLM fine-tuned on Flickr30k into MMER.
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Figure 4: Performance retention vs. MLLMs quantity.

mance retention in the trimmed average. Detailed445

performance for each task is in Appendix E.3.446

Results on Mitigating Catastrophic Forgetting.447

The results for both single-task and cross-modal448

multi-tasks scenarios are shown in Table 3. (i)449

Fine-tuning MLLMs boosts performance on new450

tasks but often compromises on previous ones. In451

contrast, MMER, which additionally incorporates452

a fine-tuned MLLM (i.e., MMER-Clotho-AQA or453

MMER-Flickr30k), demonstrates strong robustness.454

It maintains nearly original performance on pre-455

vious tasks and adapts effectively to new ones,456

achieving results comparable to fine-tuned MLLMs.457

(ii) We further integrated both fine-tuned MLLMs458

into MMER to showcase its performance in a cross-459

modal multi-tasks scenario. As more MLLMs are460

integrated, MMER continues to retain performance461

across new and previous tasks, though its ability to462

preserve performance slightly diminishes. Lastly,463

we compared MMER with LoRA and the latest464

method, Model Tailor, in Appendix E.1. Detailed465

results for each task are provided in Appendix E.3.466

467

6 Additional Results and Analysis468

Performance & Storag vs. MLLM Quantity.469

Figure 4 presents the performance retention of470

6.73%

Audio Point

Vision Video

0.58% 8.24%

6.27% 2.41%

4.65% 9.27%
10.19%

2.55% 11.88%

6.88% 11.12%

6.76%6.21%

6.07%

Figure 5: Parameters overlap across modalities.

merging different numbers of MLLMs in retention 471

experiments. We can see that performance declines 472

across all methods as more MLLMs are merged, in- 473

dicating intensified parameter conflicts. Neverthe- 474

less, MMER consistently outperforms other methods 475

with only minor degradation, while other methods 476

exhibit a noticeable drop when dealing with mul- 477

tiple MLLMs. This highlights the robustness of 478

parameter decoupling in mitigating conflicts. In 479

terms of storage, MMER significantly reduces costs 480

compared to maintaining individual MLLMs while 481

preserving similar performance and enabling multi- 482

modal expansion. Although it requires about twice 483

the storage of model merging methods, it does not 484

increase inference parameters and delivers notable 485

performance improvements, striking an effective 486

balance between the two approaches. Storage com- 487

parison details are in Appendix C. 488

Parameters Overlap in Merged Task Vector. 489

Specifically, 40.43%, 55.36%, 64.49%, and 66.28% 490

of audio, video, vision, and point parameters, are 491

integrated into the merged task vector. The over- 492

lap between them shown in Figure 5, reveals a se- 493

vere conflict between parameters across modalities. 494

This underscores the need for MMER to decouple 495

key parameters and effectively mitigate conflicts. 496
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Expansion Retention
Method

ACC. Score (%) / ACC. (%)
MMER 56.82 24.17 (99.8) / 50.84 (99.4)

− Directional Congruence 7.20 10.05 (41.6) / 8.34 (16.7)

− Dominant Significance 33.87 14.71 (60.5) / 28.93 (57.1)

− Scaling Factor λ 54.02 23.14 (95.6) / 47.78 (93.9)

Table 4: Ablation study on parameter decoupling steps.

Modality-Specific Masks Analysis. Figure 6497

(left) illustrates the percentage of parameters se-498

lected by different modality masks and compares499

the performance retention of MMER with NaiveMC.500

MMER achieves performance close to or even ex-501

ceeding the original levels, indicating that cru-502

cial modality-specific information is preserved af-503

ter merging. Surprisingly, we find that the au-504

dio mask, retaining only 2.2% of the parameters,505

still contributes to performance retention. This506

phenomenon aligns with previous research (Yu507

et al., 2024), which noted that “Supervised fine-508

tuned language models tend to acquire excessively509

redundant delta parameters (i.e., task vectors).”510

Our results further confirm that this holds true for511

MLLMs as well. A detailed analysis and explana-512

tion are provided in Appendix D.2.513

Hyperparameters Analysis. Figure 6 (right) ex-514

amines the effects of the TopK% hyperparameters515

and the scaling factor λ. TopK% controls the spar-516

sity of the original task vectors. Excessive sparsity517

leads to marked performance degradation due to518

insufficient information in the sparse parameters.519

Conversely, insufficient sparsity fails to mitigate520

parameter conflicts, thereby hindering the decou-521

pling of parameters. The effect of the scaling factor522

λ is akin to TopK%. The scaling factor λ regu-523

lates the extent of information the mask extracts524

from the merged task vector. If λ is too high, the525

decoupled parameters lack effective information,526

leading to performance collapse. Conversely, if λ527

is too low, irrelevant parameters persist, resulting 528

in poor performance. In summary, TopK% and λ 529

work in tandem to regulate the amount of effective 530

information in the decoupled parameters. 531

Ablation Study. In Table 4, we begin with the 532

original parameter decoupling strategy and system- 533

atically remove components to evaluate their effec- 534

tiveness. Removing Directional Congruence means 535

selecting parameters based solely on Dominant Sig- 536

nificance, i.e., mi = 1{ |τi| ≥ 50% · λi|τ∗|}. Re- 537

moving Dominant Significance retains parameters 538

based only on the consistency of their signs, i.e., 539

mi = 1{sign(τi) = sign(τ∗)}. Table 4 shows 540

these components are crucial for optimizing perfor- 541

mance. Specifically, Directional Congruence is the 542

most critical. Without it, the decoupled parameters 543

lose all original modality information and become 544

nearly meaningless. Next in importance is Dom- 545

inant Significance. Without filtering out crucial 546

parameters, irrelevant ones persist and disrupt the 547

original parameters. Finally, the scaling factor λ 548

also plays a role in further enhancing performance. 549

7 Conclusion 550

In this paper, we propose MMER, a training-free 551

method that resolves the dilemma of multimodal 552

expansion for LLMs: costly retraining or subopti- 553

mal performance. MMER retains the multimodal en- 554

coders of existing MLLMs, merges their LLM pa- 555

rameters, and constructs binary masks to decouple 556

modality-specific parameters. This mechanism en- 557

ables independent handling of modality-specific in- 558

puts, reducing parameter conflicts. Besides, MMER 559

can reconstruct original MLLMs, effectively retain- 560

ing their performance and mitigating catastrophic 561

forgetting. We conducted extensive experiments 562

and analyses to validate the effectiveness and ro- 563

bustness of our MMER approach. 564
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Limitations565

We have focused exclusively on four commonly566

used modalities, leaving out a thorough analysis567

of the full range of potential modalities. Addition-568

ally, finding multiple existing MLLMs with the569

same architecture across modalities is currently570

challenging, and due to limited computational re-571

sources, experiments on larger-scale MLLMs are572

constrained. Finally, although our MMER approach573

does not increase inference parameters, the storage574

cost is twice that of the base model.575

Ethical Considerations576

Our research is conducted using publicly available577

and safe datasets and models. However, we explic-578

itly acknowledge that the applicability of our MMER579

approach and findings may be limited to datasets580

or domains similar to those studied. The perfor-581

mance of our approach on other specific datasets or582

domains remains uncertain, and there may be po-583

tential risks when applying it to privacy-sensitive or584

high-risk scenarios. Therefore, caution is advised,585

and thorough verification is necessary to ensure the586

method generates accurate and reliable results in587

such contexts.588
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A Novelty and Contributions973

Our research aims to achieve training-free multi-974

modality expansion and retention for LLMs975

through parameter merging and decoupling. We976

conduct a comparative analysis with existing rele-977

vant methods to demonstrate the innovation of our978

MMER approach.979

Comparison with NaiveMC and DAMC frame-980

works. Our MMER approach is based on the981

NaiveMC framework (Chen et al., 2024a) and em-982

ploys a parameter dynamic decoupling strategy983

similar to that of the DAMC framework (Chen984

et al., 2024a) to mitigate parameter conflicts in985

the merged MLLM. However, there are several key986

differences:987

1. Compared to the NaiveMC framework, our988

MMER approach effectively enhances the mul-989

timodal performance of the merged MLLM.990

2. Compared to the DAMC framework, our991

MMER approach employs a training-free pa-992

rameter decoupling strategy instead of sep-993

arating parameters during the initialization994

training of the MLLMs and achieves sim-995

ilar results. Additionally, MMER is addi-996

tional compatible with full-parameter fine-997

tuned MLLMs, whereas DAMC is restricted998

to parameter-efficient fine-tuned MLLMs.999

3. Compared to the NaiveMC and DAMC frame-1000

works, our MMER approach retains the per-1001

formance of the original MLLMs while also1002

providing additional capabilities to mitigate1003

catastrophic forgetting.1004

Our MMER approach integrates the strengths of the1005

NaiveMC and DAMC frameworks, while addition-1006

ally providing original performance retention capa-1007

bilities.1008

Comparison with training-free model merging1009

methods. Training-free model merging methods,1010

such as TA (Ilharco et al., 2023), TIES (Yadav et al.,1011

2023), and DARE (Yu et al., 2024), are primarily1012

designed for merging models with identical archi-1013

tectures. Consequently, they must be combined1014

with the NaiveMC framework to achieve multi-1015

modality expansion for LLMs. These methods al-1016

leviate parameter conflicts in merged MLLMs to1017

some extent, leading to performance enhancement.1018

However, their overall effectiveness, both in terms1019

of multimodal performance and retention of origi- 1020

nal performance, falls significantly short compared 1021

to our MMER approach. 1022

Comparison with alignment and fine-tuning 1023

methods. Compared to methods (Chen et al., 1024

2023a; Lyu et al., 2023; Han et al., 2024) that 1025

achieve multimodal expansion for LLMs by adding 1026

multiple new modality encoders or employing a 1027

unified multimodal encoder followed by alignment 1028

and fine-tuning, the advantages of our MMER ap- 1029

proach are clear. MMER can effectively reuse a 1030

large number of MLLMs from the open-source 1031

community and merge them enabling multimodal 1032

expansion without the need for extensive resources 1033

and time spent on training models and constructing 1034

high-quality modality instruction data. 1035

Comparison with TALL-masks. TALL- 1036

masks (Wang et al., 2024) is an information 1037

localization algorithm that, similar to our approach, 1038

compresses original parameters and subsequently 1039

approximates their restoration. However, there are 1040

several key differences: 1041

1. From an algorithmic perspective, TALL- 1042

masks overlooks the Consistency of original 1043

and merged parameter signs. In contrast, we 1044

have addressed this aspect and demonstrated 1045

its effectiveness in our ablation experiments 1046

(See Table 4). 1047

2. In terms of application scenarios, our MMER 1048

applies parameter merging and decoupling to 1049

the multimodal expansion for LLMs, enhanc- 1050

ing their multimodal capabilities. Addition- 1051

ally, we utilize MMER to mitigate catastrophic 1052

forgetting. These aspects are not considered 1053

by TALL-masks. 1054

3. Regarding the models utilized, the mod- 1055

els used in our MMER approach are the 7B 1056

MLLMs across various modalities, while 1057

TALL-masks is applied to relatively smaller 1058

models within the same modality, such as 1059

T5 (Raffel et al., 2020) and ViT (Dosovitskiy 1060

et al., 2021). 1061

B Implementation and Experimental 1062

Details 1063

All our experiments are conducted on an NVIDIA 1064

8×A800-SXM4-80GB machine. 1065
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Modality Modality Encoder Connector Alignment Data Fine-tuneing Data Referenced Work
Image CLIP-ViT-L-336px

(Dosovitskiy et al.,
2021)

MLP LCS 558K (Xu et al.,
2024)

LLaVA-mixed 665K (Xu et al.,
2024)

LLaVA-1.5 (Liu
et al., 2024)

Audio BEATs-Iter3+ (Chen
et al., 2023b)

Q-Former WaveCaps 400K (Mei
et al., 2024)

OpenAQA filtered 350K (Gong
et al., 2024)

X-InstructBLIP
(Panagopoulou et al.,
2024)

Video LanguageBind (Zhu
et al., 2024a)

MLP LCS 558K,
Valley 702K (Luo et al.,
2023)

Video-ChatGPT 100K (Maaz
et al., 2024), LLaVA-mixed
sampled 140K

Video-LLaVA (Lin
et al., 2023)

Point
Cloud

Point Encoder (Xu
et al., 2024)

MLP PointLLM brief
description 660K (Xu
et al., 2024)

Point complex instruction 70K
(Xu et al., 2024)

PointLLM (Xu et al.,
2024)

Table 5: Training data and components of MLLMs for different modalities.

Stage Hyperparameter Image Audio Video Point Cloud

Alignment-State

Batch size 256 256 256 128
LR 1e-3 1e-3 1e-3 2e-3
LR Schedule cosine decay
Warmup Ratio 0.03
Epoch 1 1 1 3

Fine-tuning-Stage

Batch size 128 64 128 64
LR 2e-5 1e-5 2e-5 2e-5
LR Schedule cosine decay
Warmup Ratio 0.03
Epoch 1 3 1 3

Table 6: Hyperparameters of different MLLMs.

B.1 Performance Retention1066

Considering the varying modalities of each original1067

MLLM and the different evaluation metrics for1068

distinct tasks, we provide performance retention1069

in our results to validate the method’s capacity to1070

retain original performance. The definition is as1071

follows:1072

PR =
1

T

T∑
t=1

metric
x∼µt

[fmethod(x)]

metric
x∼µt

[
foriginal(x)

] (8)1073

where PR stands for performance retention and1074

the “metric” refers to various evaluation metrics,1075

such as accuracy and captioning scores(e.g., BLEU,1076

ROUGE).1077

B.2 Implementation Details of Parameter1078

Merging and Decoupling Process and1079

Original Fine-tuned MLLMs1080

For the parameter merging and decoupling process,1081

we set TopK to 80%, while λ was calibrated ac-1082

cording to the modality. We did not set the value of1083

α as we did not use the merged MLLM merging by1084

TIES in MMER. For fine-tuning the original MLLM,1085

we used the same training data and components of1086

each MLLM across the four modalities following 1087

NaiveMC (Chen et al., 2024a). More details are 1088

presented in Table 5. We adopted similar hyper- 1089

parameters following previous works (Chen et al., 1090

2024a; Liu et al., 2024; Panagopoulou et al., 2024; 1091

Lin et al., 2023; Xu et al., 2024). During the align- 1092

ment stage, only the parameters in the connectors 1093

were trainable. In the fine-tuning stage, we tuned 1094

all connector parameters and base LLM parameters. 1095

For training efficiency, we utilized DeepSpeed Zero 1096

Optimization Stage 3. Detailed data are presented 1097

in the Table 6. 1098

B.3 Baseline Details 1099

In this section, we provide a detailed overview of 1100

the six baselines included in our experiments: 1101

• Original MLLMs means that each MLLM is 1102

evaluated on its corresponding modality tasks 1103

to demonstrate its original performance, but 1104

they cannot perform cross-modal tasks simul- 1105

taneously. 1106

• NaiveMC framework (Chen et al., 2024a) 1107

combines modality-specific encoders from 1108

multiple MLLMs into the merged LLM, 1109
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which is obtained by averaging the parameters1110

of multiple LLMs from these MLLMs. The1111

averaging merging strategy can be replaced1112

by other model merging methods.1113

• TA (Ilharco et al., 2023) initially defines the1114

concept of task vector and employs arithmetic1115

operations for model merging, model forget-1116

ting, and support multi-tasks learning, etc.1117

The final model is formed by scaling and1118

adding task vectors to the initial model, rep-1119

resented mathematically as θm = θinit + λ ·1120 ∑n
t=1 τt.1121

• TIES (Yadav et al., 2023) improves upon1122

TA (Ilharco et al., 2023) by further mitigating1123

parameter interference. It first prunes redun-1124

dant parameters to retain the most important1125

ones. When encountering conflicts in parame-1126

ter signs during merging, it selects and merges1127

parameters with the majority sign while ignor-1128

ing those with minority signs.1129

• DARE (Yu et al., 2024) proposes a preprocess-1130

ing step to address parameters conflict. This1131

method randomly discards the majority of the1132

delta parameters while scaling the remaining1133

ones by θ′ = θ · (1/(1 − p)) where p is the1134

proportion of dropped delta parameters.1135

• Model Tailor (Zhu et al., 2024b) identifies the1136

key parameters fine-tuned on the new tasks1137

within the MLLM and integrates them into1138

the original MLLM, thereby retaining the per-1139

formance on previous tasks while adapting to1140

new tasks.1141

C Storage Cost Calculation1142

As shown in Figure 7, although model merging1143

methods maintain low storage costs that remain1144

constant regardless of the number of merging1145

MLLMs, their lower performance may constrain1146

their practical applicability. In contrast, main-1147

taining individual MLLMs preserves strong per-1148

formance for their respective modalities but fails1149

to achieve multimodal expansion and results in1150

linear growth in storage costs. Our MMER ap-1151

proach strikes an effective balance between these1152

approaches. It enables multimodal expansion while1153

retaining nearly 100% of the original MLLMs’1154

modality capabilities and provides additional re-1155

silience against catastrophic forgetting.1156

MMER (ours)
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Figure 7: Storage cost vs. Number of MLLMs.

Additionally, we provide the calculation of stor- 1157

age costs for MMER approach and the relevant meth- 1158

ods mentioned above. Let N , P , P ′, and P ∗ repre- 1159

sent the number of original MLLMs, the total pa- 1160

rameters of the LLMs, the number of the modality- 1161

specific component parameters, and the number 1162

of additional trainable parameters of parameter- 1163

efficient fine-tuning methods, respectively. As- 1164

suming each float parameter occupies 32 bits, the 1165

storage cost for these methods across N original 1166

MLLMs is calculated as follows: 1167

• Original fine-tuned models: 32N(P + P ′). 1168

32(P + P ′) represents the number of parame- 1169

ters contained in a single MLLM. 1170

• NaiveMC framework: 32P + 32NP ′. Stores 1171

a merged LLM and N modality-specific com- 1172

ponents. 1173

• DAMC framework: 32P + 32NP ′ + 1174

2N(32P ∗). Stores a merged LLM and N 1175

modality-specific components. 2N(32P ∗) 1176

represents the need to store an additional 2N 1177

trainable parameters of parameter-efficient 1178

fine-tuning methods for parameter separation. 1179

• NaiveMC wit TA / TIES / DARE: 32P + 1180

32NP ′. Same as the NaiveMC framework. 1181

• MMER: 64P + 32NP ′ + NP . 64P is for 1182

storing the parameters of a base LLM and a 1183

merged task vector, while 32NP ′ indicates N 1184

modality-specific components. Additionally, 1185

NP denotes the storage for N binary masks. 1186
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Expansion Retention
ACC. Score / ACC.

MMER (Manhattan) 56.82 24.17 / 50.84
MMER (Euclidean) 56.05 23.89 / 50.41

Table 7: Results of MMER with Manhattan distance or
Euclidean distance

D More Analysis1187

D.1 Rationale for Using The Manhattan1188

Distance1189

Firstly, we do not adopt methods like1190

Fisher (Matena and Raffel, 2022) or Reg-1191

mean (Jin et al., 2023), which require additional1192

gradient-based computations to obtain the in-1193

formation matrix, as they demand substantial1194

computational resources or data. Inspired by1195

TIES (Yadav et al., 2023) and DARE (Yu et al.,1196

2024), which propose that “Supervised fine-tuned1197

language models tend to acquire excessively1198

redundant delta parameter”, we aim to decouple1199

the most critical parameter of each modality from1200

the merged task vector so that the decoupled1201

parameters are as close as possible to the original1202

task vectors.1203

Based on the aforementioned concept, we de-1204

cided to use a binary mask matrix to directly mask1205

out irrelevant parameters in the merged task vec-1206

tor, retaining only the key information related to1207

each modality. We chose to use the Manhattan1208

distance to optimize the mask mainly due to its1209

mathematical properties and its promotion of spar-1210

sity in high-dimensional parameter spaces.1211

In particular, since most of the delta parameters1212

are redundant, this implies that most elements in1213

the mask should be zero, with only a few elements1214

set to 1. By minimizing the Manhattan distance,1215

we can easily achieve this goal because the gradient1216

of parameter updates with respect to the Manhat-1217

tan distance is constant. This makes it more likely1218

to penalize smaller non-zero parameters and drive1219

them to zero, thus encouraging the sparsity of the1220

mask. Moreover, these smaller non-zero parame-1221

ters are often redundant (Yadav et al., 2023), which1222

are the ones we wish to mask out.1223

Furthermore, Manhattan distance directly mea-1224

sures the element-wise difference between the1225

merged task vector and the original task vectors.1226

This comparison can precisely capture which pa-1227

rameters have undergone significant changes dur-1228

ing fine-tuning and which parameters are irrelevant1229

Directional Alignment Average Magnitude
Vision 69.20% 5e-4
Audio 50.62% 8e-5
Video 57.58% 2e-4
Point 70.09% 5e-4

Table 8: Percentage of parameters whose directions
align with those in the merged task vector and the aver-
age magnitude of the parameters across the task vectors
of the four modalities

noise. Finally, We conducted both multi-modality 1230

expansion and retention experiments by replacing 1231

the Manhattan distance with the Euclidean distance. 1232

The results presented in the Table 7 validated the 1233

effectiveness of using Manhattan distance. 1234

D.2 Modality-Specific Masks Further 1235

Analysis 1236

We construct the audio mask by comparing the 1237

merged task vector with the original audio MLLM 1238

task vector. Thus, the audio mask selecting only 1239

2.2% of the parameters reflects the significant dif- 1240

ference between these two task vectors. Next, we 1241

analyze why the remaining 97.8% of parameters 1242

were not selected. There are two possible reasons 1243

for the unselected parameters: 1244

1. The signs of τ (p)∗ and τ
(p)
audio are opposite. 1245

2. The signs of τ (p)∗ and τ
(p)
audio are the same, but 1246

the magnitude of τ (p)audio is too small. 1247

We examined the percentage of τ (p)i whose signs 1248

align with those in the merged task vector and the 1249

average magnitude of τ (p)i across four modalities, 1250

the results are shown in Table 8. 1251

It is evident that the direction mismatch is not 1252

the primary cause, as the percentage differences in 1253

directional alignment across the four modalities are 1254

relatively small. However, we found that the magni- 1255

tude of the audio task vector is significantly smaller 1256

than those of the other modalities. This indicates 1257

that the original audio MLLM is highly similar to 1258

the pre-trained LLM. As a result, the merged model 1259

(97.8% of the parameters from the pre-trained LLM 1260

with 2.2% of the parameters activated by the audio 1261

mask from the merged task vector) only needs to 1262

activate 2.2% of the key parameters to retain its 1263

audio performance. 1264
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7 Original Image Tasks New Tasks
Task (→)

VQAv2 GQA TextVQA VizWiz ScienceQA POPE OK-VQA Avg. Flickr30k
Method (↓) Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Score

Original MLLMs 78.11 61.52 55.89 51.51 71.12 86.17 31.33 62.23 51.26
Fine-tune on Flickr30k 72.27 54.19 46.10 52.88 70.22 76.28 28.31 57.25 57.71
Lora 75.72 58.24 52.87 52.64 70.63 85.08 29.21 60.63 54.85
MMER-Flickr30k (ours) 77.75 61.43 55.41 52.72 71.75 85.72 31.07 62.27 57.08

Table 9: The results of MMER and LoRA fine-tuning on original vision LLM for Flickr30k.

One New Task Two New Tasks
Method

Previous tasks New task Previous tasks New tasks
Storage

Model Tailor[ICML24] (Zhu et al., 2024b) 96.47 % 91.69 % 99.28 % 87.50 % 32(P + P ′)

MMER (ours) 99.86 % 99.67 % 99.63 % 99.42 % 64P + 32P ′ + NP

Table 10: Performance retention & Storage vs. Mitigating MLLMs’ catastrophic forgetting methods in the same
modality. Let N , P , and P ′ represent the number of new tasks, the total LLM parameters, and the modality-specific
component parameters, assuming each float parameter occupies 32 bits.

D.3 Analysis of Performance Improvement in1265

Multi-Modality Retention Experiment1266

Firstly, the performance gain is not due to the re-1267

moval of redundant parameters. In general, as more1268

parameters are removed, performance tends to de-1269

grade (Yadav et al., 2023; Yu et al., 2024). This1270

trend was also evident in our analysis (see Figure 61271

(right)), where increasing the Dominant Signifi-1272

cance λ·50% resulted in a reduction of selected1273

parameters for each modality, leading to a gradual1274

decline in performance.1275

So, what accounts for the performance improve-1276

ment? We hypothesize that the parameters selected1277

by the mask overlap with parameters from other1278

modalities. To explore this further, we analyzed1279

the overlap of the parameters selected by the au-1280

dio mask with those from other modalities. We1281

found that 41.7% of these parameters do not over-1282

lap with any other modality, while 23.2%, 21.1%,1283

and 22.1% overlap with the video, vision, and point1284

modalities, respectively.1285

It is possible that the model benefits from addi-1286

tional knowledge embedded in these overlapping1287

parameters, such as prior knowledge or instruction-1288

following capabilities. To validate this hypothesis,1289

we replaced the overlapping parameters with the1290

original audio task vector and conducted experi-1291

ments on three audio tasks, yielding results of 24.711292

(97.6%) / 24.32 (98.4%). Notably, the performance1293

improvement was lost, which confirms the validity1294

of our analysis.1295

E Detailed Results and Extended 1296

Experiments 1297

E.1 Mitigating Catastrophic Forgetting 1298

Experiments 1299

MMER vs. LoRA. We fine-tuned a LoRA adapter 1300

on original vision MLLM for Flickr30k, with the 1301

detailed results presented in Table 9. The results 1302

show that LoRA improves performance on target 1303

tasks but inevitably leads to a decline in perfor- 1304

mance on previous tasks, although this decline is 1305

less severe compared to full-parameter fine-tuning. 1306

In contrast, our MMER approach outperforms LoRA 1307

on target tasks, while causing almost no degrada- 1308

tion in previous tasks. However, this comes at 1309

the cost of increased storage overhead. Both ap- 1310

proaches have distinct advantages and disadvan- 1311

tages, enabling users to select the most suitable 1312

method based on their specific requirements. 1313

More importantly, our approach addresses an 1314

additional application scenario. In the open- 1315

source community, models are typically catego- 1316

rized into adapter-based models and full-parameter 1317

fine-tuned models. While the former can be eas- 1318

ily integrated into existing models, the latter lacks 1319

such adaptability. Our approach bridges this gap 1320

by providing a solution to seamlessly incorporate 1321

full-parameter fine-tuned models. 1322

MMER vs. Model Tailor. In Table 10, we com- 1323

pare our MMER approach with the latest method 1324

for mitigating catastrophic forgetting in MLLMs 1325

within the same modality, since Model Tailor (Zhu 1326

et al., 2024b) is unable to accommodate new tasks 1327
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Task (→) Objaverse-classification AVQA
Method (↓) PI-T VI-T VA-T AVI-T

–Training-based Multimodal Baselines

ImageBind-LLM(Han et al., 2023) 26.50 51.65 55.00 54.26

X-InstructBLIP [ECCV2024](Panagopoulou et al., 2024) 31.50 40.42 44.29 44.23

–Training-free Model Merging Methods

NaiveMC [ACL2024](Chen et al., 2024a) 57.50 74.12 74.27 75.06

TA [ICLR2023](Ilharco et al., 2023) 59.00 76.34 76.58 77.25

TIES [NeurIPS23](Yadav et al., 2023) 59.00 77.69 77.88 78.24

NaiveMC (w/ DARE [ICML2024](Yu et al., 2024)) 58.00 75.17 75.22 76.16

TA (w/ DARE) 59.50 77.24 77.47 78.03

TIES (w/ DARE) 60.00 77.95 78.14 78.51

MMER (ours) 60.00 79.74 79.98 80.72

Table 11: Accuracy (%) results on two additional multimodal tasks.

Task (→)
Model (↓)

ModelNet40 MUSCI-AVQA

Vision MLLM 51.94 44.06
Audio MLLM - 30.63
Video MLLM - 47.72
Point MLLM 21.27 -
MMER (ours) 62.15 53.54

Table 12: Accuracy (%) results of four original uni-
modal models on the multimodal tasks.

across different modalities. The results show that1328

MMER consistently outperforms Model Tailor in1329

both single-task and multi-tasks scenarios, high-1330

lighting its effectiveness. Furthermore, as the num-1331

ber of new tasks increases, MMER maintains rela-1332

tively stable performance, whereas Model Tailor1333

exhibits a significant decline in performance on1334

new tasks (i.e., from 91.69% to 87.50%), despite1335

some improvement on previous tasks. However, a1336

minor drawback of MMER is that its storage cost is1337

approximately twice that of Model Tailor. Nonethe-1338

less, as the number of new tasks grows, MMER’s1339

practicality becomes more pronounced, making it a1340

more viable solution in scenarios where balancing1341

performance and storage efficiency is crucial.1342

E.2 Further Results of Multi-Modality1343

Expansion Experiments1344

To further validate the generalization capabil-1345

ity of MMER, we extended multi-modality expan-1346

sion experiments to two additional multimodal1347

datasets—Objaverse (Deitke et al., 2023b) and1348

AVQA (Yang et al., 2022). As shown in Table1349

11, MMER continues to demonstrate consistent ad-1350

vantageous characteristics on these new datasets, 1351

outperforming other baselines in terms of perfor- 1352

mance. These results confirm the robustness of 1353

MMER across diverse multimodal tasks. 1354

We also supplemented the results of four origi- 1355

nal unimodal models on the multimodal tasks for a 1356

fairer comparison. Since MCUB cannot be evalu- 1357

ated using unimodal models, we excluded it from 1358

the analysis. As shown in Table 12, we observe 1359

that MMER consistently outperforms the unimodal 1360

models. This advantage arises from MMER’s in- 1361

tegration of additional modal information. This 1362

demonstrates MMER’s ability to effectively decou- 1363

ple modality parameters, enabling it to handle in- 1364

puts from different modalities more efficiently, and 1365

highlights its strength in enhancing multimodal un- 1366

derstanding. 1367

E.3 Detailed Results 1368

In this section, we present detailed results from 1369

the multi-modality retention and mitigating catas- 1370

trophic forgetting experiments. The results of vari- 1371

ous baselines for seven vision tasks are shown in 1372

Table 13, two point cloud tasks in Table 14, three 1373

audio tasks and two video tasks in Table 15, three 1374

multimodal tasks in Table 16, and the last two new 1375

tasks in Table 17. 1376

F Qualitative Results 1377

We provide qualitative results in Figure 8. These 1378

results demonstrate the capability of the merged 1379

MLLM constructed by our MMER approach to un- 1380

derstand and reason with multimodal inputs. 1381
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7 Image Tasks
Task (→)

VQAv2 GQA TextVQA VizWiz ScienceQA POPE OK-VQA
Method (↓) Acc. Acc. Acc. Acc. Acc. Acc. Acc.

Original MLLMs 78.11 61.52 55.89 51.51 71.12 86.17 31.33
MMER (ours) 77.95 61.85 55.74 52.26 71.16 86.58 31.27

–Multi-Modality Retention

NaiveMC [ACL2024] (Chen et al., 2024a) 59.73 45.83 42.29 47.87 68.52 79.41 24.28
TA [ICLR23] (Ilharco et al., 2023) 62.71 48.86 45.20 49.47 70.04 82.38 25.56
TIES [NeurIPS23] (Yadav et al., 2023) 61.78 48.23 44.60 48.67 69.05 81.21 25.13
NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 60.91 46.62 42.88 49.04 70.09 81.08 24.62
TA (w/ DARE) 63.65 49.25 45.74 49.82 70.87 83.12 25.82
TIES (w/ DARE) 62.54 48.73 45.38 49.15 69.78 82.17 25.39

–Mitigating Catastrophic Forgetting

Fine-tune on Flickr30k 72.27 54.19 46.10 52.88 70.22 76.78 28.31
MMER-Clotho-AQA 77.87 61.59 55.51 51.88 71.16 86.24 31.14
MMER-Flickr30k 77.75 61.43 55.41 52.72 71.75 85.72 31.07
MMER-Clotho-AQA+Flickr30k 77.32 61.33 55.23 52.33 71.02 85.43 30.94

Table 13: Results for each method on seven image tasks. All tasks are Question-Answering tasks.

2 Point Tasks
Task (→)

ModelNet40 Objavers-captioning
Method (↓) Acc. BLEU-1 ROUGE-L METEOR Sentence-BERT SimCSE

Original MLLMs 21.27 4.73 8.51 12.02 44.18 46.31
MMER (ours) 22.49 5.06 8.53 11.90 43.72 46.51

–Multi-Modality Retention

NaiveMC [ACL2024] (Chen et al., 2024a) 20.49 4.43 8.24 11.37 43.22 45.97
TA [ICLR23] (Ilharco et al., 2023) 21.02 4.69 8.46 11.73 43.55 46.38
TIES [NeurIPS23] (Yadav et al., 2023) 20.83 4.55 8.39 11.60 43.29 46.27
NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 20.77 4.41 8.38 11.59 43.47 46.28
TA (w/ DARE) 21.25 4.81 8.49 11.82 43.67 46.42
TIES (w/ DARE) 20.98 4.62 8.31 11.47 43.14 46.28

–Mitigating Catastrophic Forgetting

MMER-Clotho-AQA 21.87 4.92 8.46 11.52 43.55 46.28
MMER-Flickr30k 22.03 5.08 8.55 11.63 43.61 46.36
MMER-Clotho-AQA+Flickr30k 21.56 4.98 8.39 11.38 43.34 46.02

Table 14: Results for each method on two point cloud tasks. Among them, ModelNet40 is a classification task,
while Objavers is a captioning task.

G Prompt for Evaluation1382

We present the evaluation prompts for each bench-1383

mark in Table 18. To denote the inputs for var-1384

ious modalities, we use “<image>”, “<audio>”,1385

“<video>”, and “<point>” to represent vision, au-1386

dio, video, and point cloud modalities, respectively.1387
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3 Audio Tasks 2 Video Tasks
Task (→)

TUT VocalSound Clotho MSVD MSRVTT
Method (↓) Acc. Acc. CIDEr SPICE SPIDEr Acc. Acc.
Original MLLMs 22.23 27.19 38.63 11.98 25.29 48.40 31.18
MMER (ours) 34.14 42.88 38.49 11.93 25.18 48.12 30.43
–Multi-Modality Retention

NaiveMC [ACL2024] (Chen et al., 2024a) 29.50 31.80 37.56 11.61 24.61 44.53 29.31
TA [ICLR23] (Ilharco et al., 2023) 30.64 33.12 37.69 11.67 24.69 45.61 29.54
TIES [NeurIPS23] (Yadav et al., 2023) 30.87 33.42 37.89 11.72 24.78 45.88 29.74
NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 30.50 32.75 37.75 11.66 24.74 45.69 29.58
TA (w/ DARE) 30.98 33.90 37.87 11.69 24.89 45.51 29.54
TIES (w/ DARE) 31.59 34.45 37.96 11.87 24.92 46.07 29.93
–Mitigating Catastrophic Forgetting

Fine-tune on Clotho-AQA 6.98 17.65 30.02 9.40 20.04 - -
MMER-Clotho-AQA 34.01 42.45 38.37 11.89 25.11 48.04 30.29
MMER-Flickr30k 33.41 41.94 38.10 11.81 24.98 47.74 30.05
MMER-Clotho-AQA+Flickr30k 33.54 41.83 37.97 11.76 24.92 47.38 29.67

Table 15: Results for each method on three audio tasks and two video tasks. Among them, TUT, VocalSound,
MSVD, and MSRVTT are the classification tasks, while Clotho is a captioning task.

Task (→) ModelNet40 MUSCI-AVQA MCUB
Method (↓) PI-T IA-T VI-T VA-T AVI-T AVP-T AIP-T VIP-T AVIP-T

MMER-Clotho-AQA 61.98 47.01 51.22 51.43 56.08 59.11 65.08 55.80 61.08

MMER-Flickr30k 61.84 46.92 51.05 51.56 56.28 58.90 65.08 55.40 60.93

MMER-Clotho-AQA+Flickr30k 61.33 46.48 50.61 51.17 55.68 57.93 64.17 55.20 60.42

Table 16: Results of the mitigating catastrophic forgetting experiments for three MMER variants on multimodal tasks
with different combinations of video (V), image (I), audio (A), point cloud (P), and text (T) inputs.

Task (→) Clotho-AQA Flickr30k
Method (↓) Acc. CIDEr METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

Original MLLMs 49.40 80.27 25.62 73.29 55.81 41.11 29.66 53.11
Fine-tune on Clotho-AQA 57.80 - - - - - - -
Fine-tune on Flickr30k - 94.25 27.74 78.27 62.24 47.99 36.50 57.04

MMER (ours) 49.28 79.56 25.56 73.11 55.62 40.83 29.49 52.82
MMER-Clotho-AQA 57.71 79.72 25.51 73.04 55.48 40.72 29.33 52.77
MMER-Flickr30k 48.94 92.74 27.58 77.93 61.69 47.36 36.02 56.27
MMER-Clotho-AQA+Flickr30k 57.52 92.09 27.29 77.22 61.11 46.86 35.62 55.72

Table 17: Results of the mitigating catastrophic forgetting experiments for each method on two new tasks. Among
them, Clotho-AQA is a Question-Answering task, while Flickr30k is a captioning task.
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The image features a cat wearing a hat that is made of a 

pattern of orange and black stripes. The cat is looking 

directly at the camera with its green eyes, and its fur is a mix 

of orange and black. The cat's ears are perked up and its 

whiskers are visible. The hat is pulled down slightly over the 

cat's eyes, giving it a playful and mischievous look. The 

background is blurry, suggesting that the cat is the main 

focus of the image.

Describe this image in detail.

The audio clip features a man speaking, followed by a car 

engine revving and tires screeching. The man's speech is 

difficult to understand due to the loud car noise. The car is 

accelerating and the engine is revving at a high RPM, 

creating a loud and intense sound. The tires screech as the 

car takes off, adding to the overall excitement of the scene.

Describe this audio in detail.

[Car Rev and Screech]

There are two people in this video. 

How many people are in this 

video?  

What are they doing?

The man is holding a baby in his arms and smiling while the 

baby is sleeping.

This species is a blue shark.

What is this species?

Tell me more about this shark.

The shark in the image is a blue shark, which is a species of 

open ocean pelagic shark. It is a large shark, with a length of 

up to 21 feet and a weight of up to 1,100 pounds. The blue 

shark is known for its distinctive blue coloration, which is 

caused by a layer of reflective cells that help it blend into the 

surrounding water. It is a fast swimmer and can reach speeds 

of up to 35 miles per hour. 

Yes, the object in the point cloud, which is a car, can produce 

the sound in the audio. The sound is likely a car horn or a 

police siren.

Can the object in the point cloud produce the sound in the audio?

[Car horn sound]

No, the animal in the image is a dog and the point cloud is a 

Squirrel.

Are the specie of the animal in the image the same as that in 

the point cloud?

[Baby Laughs 

and Man Singing ]

The theme of this image, video, and audio is the bond 

between the parent and their child. The woman in the image 

is seen holding and caring for her baby, while the video and 

audio feature a man singing to his child, showcasing the love 

and affection he has for the baby. The theme of family and 

parenthood is prevalent in all three pieces of media, 

emphasizing the importance of nurturing and caring for 

one's child.

Describe the theme this image has in common with this video 

and this audio in detail.

Yes, the object in the image is a motorcycle, and the sound in 

the audio is a motorcycle engine.

Can the object in the image produces the sound in the audio?

[Motorcycle engine]

The audio is a recording of a group of people on a boat, with 

some of them speaking and others making noise.  There are 

also sounds of water and wind.  The audio seems to be from 

a different source than the image, which shows a boat with 

people on it, but it is possible that the audio was recorded at 

the same time as the image.  The people on the boat are 

laughing and having a good time.  The audio is not clear 

enough to make out what is being said, but it seems to be a 

group of people having a good time on a boat.

Describe this audio in detail.  Can 

this image produce this audio?
[Crowd Chatter]

The image depicts a small boat, likely a gondola, carrying a 

large group of people on a river. The boat is covered in a 

canopy, and the passengers are holding umbrellas of various 

colors to protect themselves from the rain. The passengers 

appear to be mostly tourists, as they are dressed in casual 

clothing and some are taking photographs. The boat is being 

rowed by a man wearing a hat and a striped shirt. The river 

is lined with buildings on either side, including a bridge with 

a red roof in the background. The scene is peaceful and 

serene.

Describe this image in detail.

The object in the video is a goldfish. It can be in the river of 

the image.

What is the object in the video? 

Could it be in the image?

The object in the point is a car. It is possible that the car is in 

the image, but it is not explicitly shown.

What is the object in the point? 

Could it be in the image?

Figure 8: Qualitative results.
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Benchmark Modality Prompt Template

AVI-T Based on four input entities:\nimage <image>\naudio
<audio>\nvideo <video>\n {Question} {Options} Answer with
the option’s letter from the given choices directly.

AVP-T Based on four input entities:\naudio <audio>\nvideo
<video>\npoint <point>\n {Question} {Options} Answer with
the option’s letter from the given choices directly.

MCUB VIP-T Based on four input entities:\nimage <image>\nvideo
<video>\npoint <point>\n {Question} {Options} Answer with
the option’s letter from the given choices directly.

AIP-T Based on three input entities:\nimage <image>\naudio
<audio>\npoint <point>\n {Question} {Options} Answer with
the option’s letter from the given choices directly.

AVIP-T Based on four input entities:\nimage <image>\naudio
<audio>\nvideo <video>\npoint <point>\n {Question} {Options}
Answer with the option’s letter from the given choices directly.

VI-T Based on the video <video> and image <image>\n{Question}
\nAnswer the question using a single word.

MUSIC-AVQA VA-T Based on the video <video> and audio <audio>\n{Question}
\nAnswer the question using a single word.

IA-T Based on the image <image> and audio <audio>\n{Question}
\nAnswer the question using a single word.

ModelNet40 PI-T Based on rendered image <image> and point cloud
<point>\nWhat is this? Select from these objects: {Options}
Answer the question using a single word.

I-T <point>\nWhat is this? Select from these objects: {Options}
Answer the question using a single word.

Objaverse I-T <point>\nOffer a clear and concise description of this point cloud
object.

VocalSound & TUT A-T <audio>\nWhich of the following categories does this audio
belong to? {Options} Answer the question using a single word.

Clotho A-T <audio>\nDescribe this audio in detail.
Clotho-AQA A-T <audio>\n{Question}\nAnswer the question using a single word

or phrase.

MSRVTT & MSVD V-T <video>\n{Question}\nAnswer the question using a single word
or phrase.

VQAv2 & GQA &
POPE & OK-VQA

I-T <image>\n{Question}\nAnswer the question using a single word
or phrase.

Textvqa I-T <image>\n{Question}\nReference OCR token:
{Options}\nAnswer the question using a single word or phrase.

VizWiz I-T <image>\n{Question}\nWhen the provided information is
insufficient, respond with ’Unanswerable’.\nAnswer the question
using a single word or phrase.

ScienceQA I-T <image>\n{Context}\n{Question}\nChoose the most likely ratio.
{Options}

Flickr30k I-T <image>\nDescribe this image using one or more simple
sentences.

Table 18: Prompt Template for different evaluation benchmarks.
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