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Abstract

This study investigates the structured gener-001
ation capabilities of large language models002
(LLMs), focusing on producing valid JSON003
outputs against a given schema. Despite the004
widespread use of JSON in integrating lan-005
guage models with programs, there is a lack006
of comprehensive analysis and benchmarking007
of these capabilities. We explore various as-008
pects of JSON generation, such as structure un-009
derstanding, escaping, and natural language de-010
scription, to determine how to assess and enable011
LLMs to generate valid responses. Building012
upon this, we propose SchemaBench features013
around 40K different JSON schemas to ob-014
tain and assess models’ abilities in generating015
valid JSON. We find that the latest LLMs are016
still struggling to generate a valid JSON string.017
Moreover, we demonstrate that incorporating018
reinforcement learning with a Fine-grained019
Schema Validator can further enhance mod-020
els’ understanding of JSON schema, leading021
to improved performance. Our models demon-022
strate significant improvement in both generat-023
ing JSON outputs and downstream tasks.024

1 Introduction025

Recent advancements in Large Language Mod-026

els (OpenAI et al., 2023; Chowdhery et al., 2022;027

Touvron et al., 2023; Zeng et al., 2023) have fa-028

cilitated the development of various intelligent ap-029

plications like automatic web search (Qin et al.,030

2023a) or software development (Qian et al., 2023).031

Among these applications, the structured gen-032

eration of outputs, represented in JSON1 for-033

mat (Chen et al., 2025; Escarda-Fernández et al.,034

2024), has emerged as a widely utilized feature035

for integrating language models with various auto-036

matic systems and pipelines, enhancing the flexi-037

bility of language models in real-world tasks.038

1https://www.json.org/

Several methods exist for generating JSON 039

strings from LLMs. Prompting (Pokrass et al., 040

2024; He et al., 2024) is a simple approach that 041

works well for basic schemas but struggles with 042

complex logic due to the model’s limited capacity, 043

as Figure 1 shows. Tool calls (Schick et al., 2023; 044

Qin et al., 2023c) can convert model output into 045

JSON, but often miss certain schema-specific syn- 046

tax, leading to incomplete or incorrect results. Con- 047

straint decoding methods like Outlines (Willard 048

and Louf, 2023) generate valid JSON indepen- 049

dently of the model’s schema capabilities but can 050

reduce output quality (Tam et al., 2024) and are 051

time-consuming due to the need for finite-state 052

machines. The underlying challenge is the diffi- 053

culty of generating valid JSON strings for intricate 054

schemas, compounded by a lack of comprehen- 055

sive benchmarks to evaluate model performance on 056

such complex tasks. 057

This study aims to analyze and enhance the ca- 058

pacity of models to generate valid JSON strings 059

according to a given schema. Initially, we have de- 060

veloped the SchemaBench comprising around 40K 061

JSON schemas to identify primary challenges that 062

models encounter during the generation of JSON 063

strings. The benchmark encompasses three cate- 064

gories of challenges: the generation of valid JSON 065

strings with a given JSON schema, the comprehen- 066

sion of instructions inherent to JSON schemas, and 067

the escape of special tokens within JSON strings. 068

We benchmark the latest models and find that cur- 069

rent models are still limited in dealing with com- 070

plex JSON schemas, with only 61.06% correctness 071

on the SchemaBench. In our practice, even after 072

supervised fine-tuning, the model still struggles to 073

learn basic JSON syntax in some cases. This high- 074

lights the ongoing challenge of generating valid 075

JSON strings consistently. 076

Subsequently, we propose Schema Reinforce- 077

ment Learning (SRL), an innovative training 078

pipeline that integrates reinforcement learning with 079
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Figure 1: Overview of the data curation pipeline. We conduct multi-stage cleaning to obtain valid JSON schemas.
The pie chart on the top right shows the data type distribution of the collected schemas. The top three data types are
string, object, and array. The error cases in the left corner show possible errors models could make when generating
JSON strings according to the given schema.

a fine-grained schema validator to enhance the080

model’s ability to generate structured data. Further-081

more, drawing inspiration from Chain-of-Thought082

(CoT) reasoning (Wei et al., 2022), we introduce083

a novel concept called Thought of Structure (ToS)084

within our training pipeline, which encourages the085

model to engage in deeper reasoning before gener-086

ating specific JSON strings, guiding it to more ef-087

fectively navigate complex structures. Interestingly,088

we also observe that, unlike regular fine-tuning, re-089

inforcement learning helps the model maintain its090

general capabilities more effectively, preserving091

broader functionality even as it becomes more spe-092

cialized in structured generation.093

Finally, we evaluate the performance of the094

fine-tuned models in downstream tasks, such as095

BFCL (Yan et al., 2024) , to validate the generaliza-096

tion of our approach. The results indicate that our097

model exhibits significant performance enhance-098

ments when calling tools in JSON format under099

specified schemas.100

Our primary contributions are as follows:101

• We introduce a benchmark of approximately102

40K diverse JSON schemas to facilitate rigor-103

ous evaluation of model capabilities in struc-104

tured output generation.105

• We propose a novel training framework with106

online schema reinforcement learning, achiev-107

ing up to 16% improvement in valid complex108

JSON generation rates compared to super- 109

vised all baselines. 110

• We demonstrate the practical efficacy of our 111

approach through enhanced performance on 112

downstream benchmarks such as BFCL, show- 113

ing that improvements in structured genera- 114

tion translate directly to superior tasks without 115

compromising general capabilities. 116

2 Related Work 117

The advancement of large language models (LLMs) 118

has significantly expanded their applications across 119

domains such as coding (Nam et al., 2024), writ- 120

ing (Pal et al., 2024), and automation (Zhu et al., 121

2023). A key aspect of these tasks is generating 122

content in predefined formats, with JSON being 123

one of the most widely used formats for structured 124

data exchange, configuration, and API interaction. 125

One approach for structured JSON genera- 126

tion involves direct prompting with a JSON 127

schema (Pokrass et al., 2024), where the model 128

is asked to generate valid JSON. While effective 129

for models with native JSON support, those with- 130

out it often struggle to capture complex schema 131

relationships, resulting in broken or incomplete 132

JSON. To address these limitations, constrained 133

generation methods have been proposed. For ex- 134

ample, Outlines (Willard and Louf, 2023) restrict 135

the model’s predictions to a set of valid tokens, 136
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improving schema adherence. Techniques like137

SGLang (Zheng et al., 2024) and XGrammar (Dong138

et al., 2024) further enhance this by improving de-139

coding efficiency. However, these methods can140

degrade output quality, particularly with complex141

schemas (Tam et al., 2024; He et al., 2024). Ad-142

ditionally, tool call re-parsing (Schick et al., 2023;143

Qin et al., 2023b,c; Qian et al., 2024) can help gen-144

erate valid JSON by converting tool outputs, but145

this often requires significant post-processing and146

struggles to align with standard schemas, leading147

to inconsistencies.148

While there are benchmarks (Zhou et al., 2023;149

Chen et al., 2024; Xia et al., 2024; Wang et al.,150

2025) for evaluating structured generation, they151

typically focus on simpler schemas and lack a de-152

tailed analysis of how LLMs perform with complex153

JSON structures. This work aims to fill this gap154

by rigorously testing LLMs’ ability to adhere to155

complex, nuanced JSON schemas.156

3 SchemaBench157

To construct the SchemaBench, we first introduce158

how we collect diverse schemas. Then we detailed159

how to create challenge tasks based on the schema160

we collected. Finally, we conduct a failure mode161

analysis to obtain an overview of problems when162

generating JSON strings with LLMs.163

3.1 Data Collection164

SchemaBench is designed to evaluate the struc-165

tured output generation capabilities of large lan-166

guage models under realistic and complex schema167

constraints. To achieve that, we crawled a total168

of 108, 528 schema files from the JSON Schema169

Store2 and GitHub. These schema files were se-170

lected to represent a wide range of applications,171

domains, and complexity levels, ensuring the diver-172

sity and representativeness of SchemaBench.173

To focus on schemas that do not rely on exter-174

nal resources, we parsed any external URIs refer-175

enced within the schemas (both relative and abso-176

lute URI), filtering out those containing inacces-177

sible external URIs and reducing the dataset to178

46, 280 schemas. The relevant content from these179

URIs was then merged into the schemas, forming180

our basic schema data. Following this, we applied181

a rigorous filtering and validation process to en-182

sure the schemas’ compliance with JSON Schema183

syntax and conventions. As a result, we removed184

2https://www.schemastore.org/json/

5, 574 schemas that did not meet these require- 185

ments. The remaining schemas were then divided 186

into a training set and a test set, containing 36, 960 187

and 3, 746 schemas, respectively, which were used 188

for constructing the training and testing datasets. 189

There are two main task categories in 190

the SchemaBench: Schema-only Generation in- 191

volves providing the model with a given schema 192

and evaluating its ability to generate valid JSON 193

strings that comply with the specified schema, 194

including any embedded instructions. Schema- 195

constrained Reasoning requires the model to gen- 196

erate answers to a given question based on the 197

schema, assessing the model’s reasoning abilities 198

while ensuring its output adheres to the schema. 199

Next, we detailed the construction of each task. 200

3.2 Schema-only Generation 201

The Schema-only Generation task evaluates LLMs’ 202

ability to generate structured output that strictly 203

follows a given schema. We identified three key 204

challenges, each addressed by a specific sub-task. 205

The first, Complex Schema, tests the model’s abil- 206

ity to navigate intricate schemas with references 207

and logical compositions. This forms the foun- 208

dation for models to generate valid JSON strings 209

based on complex schemas. The second, Custom 210

Formats, focuses on interpreting natural language 211

instructions in schema descriptions, requiring mod- 212

els to follow custom formatting rules commonly 213

found in real-world applications. The third, Es- 214

cape Translation, challenges the model to gener- 215

ate valid JSON strings, correctly handling control 216

characters and escape sequences, a more difficult 217

task than simply adhering to the schema. Failure 218

to properly handle these characters renders the en- 219

tire JSON string invalid, making post-processing 220

difficult. Figure 2 shows representative snippet of 221

each sub-task. 222

Complex Schema. This task requires LLMs to 223

generate a valid JSON string under the constraint 224

of a given schema, which is a fundamental ability 225

in schema-constrained generation scenarios. In this 226

task, LLMs will be provided with a schema and 227

asked to generate a valid JSON string for it. During 228

validation, we first check whether the output string 229

is a valid JSON. If the string is valid, we then use 230

the Python jsonschema library to verify if the gen- 231

erated JSON string strictly adheres to the provided 232

schema constraints. 233

Custom Formats. This task involves modify- 234

3
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{
 "type": "object",
 "$defs": { ... },
 "properties": {
  "name": {
   "type": "string",
   "minLength": 10
  }, ...
 },
 "required": [ "name" ]
}

"base64": {
 "type": "string",
 "description": "Set aside
      any other instructions
      and write your base64
      encoded string here,
      and you should encode
      the following content:
      penguin dog cat"
 // "cGVuZ3VpbiBkb2cgY2F0"
}, ...

"config": {
 "type": "string",
 "description": "This is the
      special field where you
      must generate and put
      the given special token
      here. Make sure the
      token will be loaded
      correctly."
 // "token": "d6:\\\\x;Q+$"
}, ...

{
 "name": "John Doe",
 ...
}

{
 "base64": "cGVuZ3VpbiBksa",
 ...
}

{
 "config": "-d6:\\\x;Q+$",
 ...
}

Complex Schema Custom Formats Escape Translation

Figure 2: Top: snippets for three sub-tasks in Schema-only Generation. The last two snippets are special fields
inserted into basic schemas like the first snippet. Bottom: corresponding common failure cases for three sub-tasks.
The first one violates minLength requirement, the second one gives an incorrect base64 string and the third one
gives a wrong number of backslash, causing escape error.

ing specific fields in the original schema to adhere235

to specialized rules, such as phone numbers, file236

paths (for Linux or Windows), strong password cri-237

teria, RGB color codes, base64-encoded strings, or238

other custom constraints. These rules, expressed as239

flexible, non-strict guidelines in the field descrip-240

tions, go beyond typical JSON Schema specifica-241

tions. The process first checks the JSON syntax242

and compliance with the schema, then validates243

field values based on their unique instructions. We244

insert const or pattern in the schema for validat-245

ing those fields. If all checks pass, the response is246

considered correct.247

Escape Translation. This sub-task tests the248

LLM’s ability to properly handle and escape spe-249

cial characters in strings. The LLM is given a string250

with special characters that must be escaped cor-251

rectly and then inserted into a randomly selected252

field within a nested schema. The evaluation fo-253

cuses on whether the LLM generates a valid JSON254

string, as improper escaping can break its validity.255

It also verifies that the special string is correctly256

inserted into the designated field. This task high-257

lights the challenge of managing escape sequences258

in JSON, where specific characters (e.g.,\", \\,259

\n) must be escaped to maintain correct syntax.260

Mismanagement of these sequences can result in261

parsing errors, invalidating the entire output.262

3.3 Schema-constrained Reasoning263

In addition to simply generating valid JSON strings264

that conform to schema constraints, real-world ap-265

Complex Custom Escape

Counts
- Train Set 9,241 18,478 9,241
- Test Set 936 1,874 936

Avg. Length 35,515 48,562 53,557
< 2K 4,014 7,903 3,955
< 4K 6,916 13,783 6,875
< 10K 9,102 18,250 9,073

Avg. Desc. Length 18,342 26,973 28,319
Avg. Depth 17.3 16.3 16.9

Table 1: Distribution of the SchemaBench. We filtered
a total of 40, 706 diverse schemas, with an average char-
acter length of 35, 754 and an average nesting depth
of the schemas is 16.7. We calculate the depth of the
schema by counting the maximum depth of the schema
definition. The average character length of the descrip-
tions within these schemas is 25, 152.

plications often require LLMs to perform specific 266

tasks. We conduct the schema-constrained reason- 267

ing test for two main reasons. Firstly, generat- 268

ing answers in JSON may hurt the models’ perfor- 269

mance (Tam et al., 2024). An ideal model should 270

deliver the same performance while it generates 271

in JSON. Second, by checking the correctness of 272

the answer, we can assess the quality of the gen- 273

erated JSON, surpassing the trivial schema check- 274

ings. Thus we adapted several common reasoning- 275

focused datasets into schema-constrained rea- 276

soning tasks, including GSM8K (Cobbe et al., 277

2021), MATH-500 (Hendrycks et al., 2021b), 278

MMLU (Hendrycks et al., 2021a), and ARC- 279

Challenge (Clark et al., 2018). We convert them to 280
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Figure 3: Statics of failure case of four models. We calculate it on the subset of the SchemaBench. All models except
GPT-4o still exhibit a relatively high JSON parsing error, indicating their lack of robustness in JSON generation.

test the model’s reasoning capabilities while adher-281

ing to schema rules. A detailed description of the282

reasoning schemas can be found in Appendix A.283

3.4 Failure Mode Analysis284

To assess the limitations of current LLMs in JSON285

generation, we perform a comprehensive failure286

mode analysis. In this evaluation, we test four287

widely used models on the previously generated288

task, utilizing greedy decoding. The results are pre-289

sented in Figure 3. GPT-4o (OpenAI et al., 2023)290

stands out to be the best model but still obtained291

13% validation error and 8% parser error, which im-292

plies that it can fail to generate valid JSON strings293

occasionally. During the three open-sourced mod-294

els we tested, we observed more parser errors com-295

pared with GPT-4o, indicating that these models296

tend to produce unresolvable strings. Qwen-2.5297

7B (Yang et al., 2024) turns out to be the best298

among the open-sourced models, with a validation299

error of 18%. LLaMA-3.2 3B (Meta, 2024) and300

MiniCPM-3 4B (Hu et al., 2024) seem to be strug-301

gling to generate a resolvable JSON string, with a302

relatively high parser error of 23% and 36%.303

Another common failure for the models we304

tested is the data format errors, including pattern305

errors, type errors, and enum errors. These kinds306

of errors indicate that the model generates content307

with unexpected data. Specifically, all models seem308

to have the same level of pattern error of 5%, which309

is dangerously close to the patterns we included310

in our test set. This indicates that when we use a311

regex pattern in the JSON schema, these models312

could easily fail to follow it.313

4 Schema Reinforcement Learning314

A straightforward approach to improve models’315

ability to generate JSON outputs is to conduct SFT.316

However, in practice, we encounter a significant 317

challenge: the absence of high-quality, valid JSON 318

strings that conform to the schemas we’ve collected. 319

In constructing the training set for SchemaBench, 320

we explored several methods to obtain such JSON 321

samples, including using automatic JSON genera- 322

tors and model-based prompting, as shown in Fig- 323

ure 1. Unfortunately, neither approach was effec- 324

tive for generating JSON outputs that adhered to 325

complex schemas at scale. 326

Therefore, instead of relying solely on manually 327

curated datasets, we propose Schema Reinforce- 328

ment Learning (SRL) by leveraging the model it- 329

self to generate the required valid JSON strings dur- 330

ing training, allowing it to iteratively improve its 331

performance in generating structured data. Build- 332

ing upon the framework presented in PRIME (Cui 333

et al., 2025), we incorporate an online reinforce- 334

ment learning approach to enhance the model’s 335

performance further. 336

Our algorithm is structured into three main 337

phases, with each phase serving a specific purpose. 338

In the sampling phase, we begin by generating K 339

responses for each query in the dataset using the 340

policy model πθ. Next, in the rewarding phase, we 341

assess the quality of each response by obtaining 342

rewards from both the schema validator rs and the 343

reward model rϕ. Finally, in the updating phase, 344

we update both the reward model rϕ and the pol- 345

icy model πθ, and then initiate the next step in the 346

process. Here we explain each phase in detail: 347

Sampling Phase. During the sampling phase, we 348

reuse the tasks defined in SchemaBench as task 349

templates and generate diverse responses from the 350

model. Each task is sampled multiple times to 351

identify the most appropriate task for the current 352

training objectives. 353

Building on Chain-of-Thought (Wei et al., 2022), 354
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we introduce Thoughts of Structure (ToS), where355

the model reflects on the structure while generat-356

ing JSON strings. This is particularly useful for357

generating complex JSON objects, which may in-358

volve intricate schemas, nested structures, or con-359

ditional dependencies. ToS works by training the360

model to generate JSON5 strings3 that include rea-361

soning comments before the JSON output. Dur-362

ing training, comments outline reasoning steps for363

each key-value pair, helping guide the generation364

process. During validation, these comments are365

ignored, and only the final JSON is validated.366

Rewarding Phase. In this phase, we obtain re-367

wards from the reward model and combine them368

with scores from the schema validator to estimate369

the advantages of each response. The advantage370

for the i-th response is computed as follows:371

Ai = r(yi)−
1

K − 1

∑
j ̸=i

r(yj) (1)372

where Ai represents the estimated advantage of the373

i-th response, and r(yi) is the reward score for the374

response yi. We use a leave-one-out estimation to375

calculate the advantage by comparing the reward376

of the current response to the average reward of all377

other responses. We sum up the advantage from378

the reward model and the validator to obtain the379

final advantages.380

A naive approach would involve directly using381

the schema to validate the generated JSON, treating382

its correctness as the reward. However, as Figure 2383

shows, the sensitivity of JSON formatting makes384

its reward signal sparse and challenging to opti-385

mize effectively. To address this, we introduce a386

more fine-grained schema validator that provides387

a detailed reward signal. This validator calculates388

the correctness ratio, defined as the proportion of389

correct tokens out of the total number of tokens390

in the generated string. In cases where the gen-391

erated string is only partially valid, the validator392

computes the correctness ratio for the valid portion393

of the string. If the string fails to parse as a valid394

JSON object—due to missing brackets, commas,395

or other syntax issues—we split the string at the396

error position and pad with control characters to397

validate the remaining content.398

Updating Phase. After obtaining rewards from399

the validator and reward model, we are ready to400

3JSON5 is an extension to JSON, more details can be
found at https://json5.org/.

update the reward model rϕ and policy model πθ. 401

Following PRIME, we select Cross Entropy loss to 402

update the reward model and use PPO (Schulman 403

et al., 2017) to update the policy model: 404

Lclip(θ) = E[min(
πθ(y|y)
πθold(y|y)

A,

clip(
πθ(y|y)
πθold(y|y)

, 1− ϵ, 1 + ϵ)A)]

(2) 405

where ϵ controls the clipping range, ensuring that 406

the policy update remains within a safe region. 407

5 Experiments 408

In this section, we first analyze the detailed per- 409

formance of the JSON schema following the capa- 410

bilities of different models on SchemaBench. We 411

also evaluate models in downstream tasks to show 412

the generalization of our approach. We finally con- 413

ducted an ablation study to analyze each compo- 414

nent of our reinforcement training pipelines. 415

5.1 Schema-Related Capabilities Analysis 416

Settings. There are two main categories of test- 417

ing in SchemaBench: schema-only generation and 418

schema-constrained reasoning. For schema-only 419

generation, we will give the model a predefined 420

schema to the model and ask the model to gener- 421

ate random JSON content to adhere to the schema. 422

Once they generate the content, we parse it and vali- 423

date it with jsonschema4 library. We use greedy de- 424

coding during the evaluation, and the prompts can 425

be found in Appendix B. For schema-constrained 426

reasoning, we select the most widely used math 427

(GSM8K, MATH500) and inquiry (MMLU, ARC- 428

Challenge) test sets and ask the model to answer 429

the problem in a given schema constraint. After 430

parsing and validating the models’ output, we eval- 431

uate the correctness of the generated answer. 432

Collected JSON We selected several widely- 433

used datasets to supplement our training data, 434

which includes the following distribution: Ultra- 435

Chat (Ding et al., 2023) (6k), UltraInteract (Yuan 436

et al., 2024) (6k), xLAM (Liu et al., 2024b) (20k), 437

Glaive5 (20k) and ToolACE (Liu et al., 2024a) 438

(10k). For the tool-calling datasets, we converted 439

the provided tools into JSON schema format, re- 440

quiring the model to output a valid JSON object 441

4https://github.com/python-jsonschema/
jsonschema

5https://huggingface.co/datasets/glaiveai/
glaive-function-calling-v2/
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Schema-only Generation Schema-constrained Reasoning

Model Complex Custom Escape Overall GSM8K MATH500 MMLU ARC-C

GPT-4o 84.47 61.56 37.14 61.06 97.80 41.40 86.16 97.01
GPT-4o-mini 68.86 46.17 16.89 43.98 86.13 31.80 49.41 77.65
Qwen-2.5 7B 72.42 43.60 11.11 42.38 94.54 38.60 74.43 91.21
MiniCPM-3 4B 53.88 20.29 9.13 27.77 69.22 33.40 66.58 88.31

LLaMA-3.1 8B 64.26 33.07 12.02 36.45 95.91 85.60 71.83 84.98
LLaMA-3.1 8B SFT 74.56 46.64 60.58 60.59 89.46 63.80 66.97 84.56
- w/o Collected JSON 70.84 42.06 60.35 57.75 78.39 46.00 58.87 75.68

LLaMA-3.2 3B 49.84 27.31 8.37 28.51 80.97 35.40 62.38 79.27
LLaMA-3.2 3B SFT 71.71 45.52 52.21 56.48 82.94 44.40 61.50 78.41
- w/o Collected JSON 72.42 42.83 54.82 56.69 78.85 36.20 59.11 75.68
LLaMA-3.2 3B SRL 82.25 66.13 69.10 72.50 84.23 43.20 57.99 78.24

Table 2: Performance comparison of various models in SchemaBench, all presented in percentage. We compare
two different training strategies: One is fine-tuning with the collected data, and the other conducts reinforcement
learning on the train set of SchemaBench.

that adheres to the corresponding tool schema. De-442

tails of the conversion process and prompts can be443

found in Appendix C.444

Results. Here, we present the performance of445

models in Table 2. For complex schema adher-446

ence, GPT-4o performs well, achieving 84.47%,447

demonstrating strong JSON schema compliance.448

However, the best model for the escape translation449

test is still GPT-4o, though it only scores 37.14%,450

revealing the difficulty in handling complex con-451

tent generation. For the open-sourced models, the452

Qwen-2.5 7B stands out to be the best, reaching up453

to 72.42% in complex schema tests.454

After fine-tuning on the SchemaBench, mod-455

els show significant improvements in schema-only456

generation tasks. Notably, the LLaMA-3.2 3B457

model obtained a remarkable boost, increasing458

from 28.51% to 72.50% after SRL, outperform-459

ing both the SFT version and all other models. The460

LLaMA-3.1 8B model also improved, with SFT461

increasing performance from 36.45% to 60.59%,462

rivaling GPT-4o. Fine-tuning LLaMA models463

without Collected JSON, however, led to perfor-464

mance drops, which means models can hardly gen-465

eralize their schema-following ability to schema-466

constrained reasoning tasks. In contrast, we sur-467

prisingly find that the model’s performance could468

generalize better during SRL.469

5.2 Downstream Tasks Analysis470

Here, we use BFCL (Yan et al., 2024) to measure471

models’ performance on downstream JSON gener-472

ation tasks. We modified its tasks by using JSON473

schema to constrain the models’ output. The de-474

tailed prompt we use can be found in Appendix C. 475

Results. The performance of models on down- 476

stream tasks is summarized in Table 3. For BFCL- 477

Live, LLaMA-3.1 8B and LLaMA-3.2 3B perform 478

poorly in most categories using tools in JSON, 479

with some categories scoring 0.00%. This is due 480

to their inability to handle complex tool-calling 481

schemas. However, after fine-tuning, both models 482

show significant improvement, adapting to schema 483

constraints and achieving better performance. For 484

the Irrelevance and Relevance metrics, the origi- 485

nal LLaMA models struggle with generating valid 486

tool calls, leading to high Irrelevance and low 487

Relevance scores. After fine-tuning, LLaMA-3.2 488

3B achieves 97.56% Relevance and 47.20% Irrele- 489

vance, demonstrating improved tool call generation 490

and schema adherence. The LLaMA-3.2 3B SRL 491

demonstrates its superiority once again, achieving 492

an impressive score of 57.00%, even in the absence 493

of a ground truth answer. 494

5.3 Ablation Study 495

In this section, we compare different settings for 496

schema reinforcement training and how it impacts 497

the performance of structured generation. 498

Settings. Across all settings, we take the same 499

training pipelines as detailed in Section 4. We 500

use the training set of the SchemaBench to train 501

our models, which contain around 37K different 502

schemas. We evaluate models on the test set of 503

the SchemaBench. We conducted experiments to 504

find whether adding ToS or the fine-grained schema 505

validator (F.G-val) could impact the performance 506

of the models. We set a batch size of 32 and a 507
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BFCL-Live

Model Simple Multiple Parallel Multiple Parallel Irrelevance Relevance Overall

GPT-4o Tool Callings 36.43 37.22 18.75 41.67 94.40 29.27 59.13

Qwen-2.5 7B 69.77 75.41 0.00 0.00 48.23 95.12 63.22
Qwen-2.5 7B Tool Callings 57.36 57.67 12.50 33.33 45.26 82.93 52.69

LLaMA-3.1 8B 0.39 0.00 0.00 0.00 60.11 36.59 24.08
LLaMA-3.1 8B Tool Callings 65.12 63.35 50.00 50.00 37.26 80.49 53.62
LLaMA-3.1 8B SFT 72.09 68.76 50.00 66.67 25.49 97.56 52.69

LLaMA-3.2 3B 4.26 13.11 0.00 0.00 73.26 39.02 35.72
LLaMA-3.2 3B Tool Callings 57.36 57.67 12.50 33.33 45.26 82.93 52.69
LLaMA-3.2 3B SFT 74.03 74.64 68.75 58.33 47.20 97.56 64.10
LLaMA-3.2 3B SRL 65.50 64.22 50.00 29.17 45.03 95.12 57.00

Table 3: Performance comparison of various models in the downstream JSON generation task. We select the live
part of the BFCL to make sure the score is valid. The tool calling lines stand for the performance in the official tool
calling formats. The fine-tuned model and the model enhanced with reinforcement training all show performance
improvements. The overall score is calculated on the weighted average score of all live tests.

Settings Schema MATH-500 ARC-C

LLaMA-3.2 3B 28.51 35.40 79.27
trained w/ ORM 31.15 39.40 78.92
+ ToS 44.89 36.60 80.38
+ F.G-val 35.59 35.60 79.10

Table 4: Ablation study results for LLaMA-3.2 3B. For
each line, we train the model by adding a component
into the ordinary RL pipelines with an outcome verifier.
All results are reported with RL after 10K samples.

learning rate of 5e−7 for all experiments. We run508

all experiments with 10K sampling times.509

Results. As Figure 4 shows, by providing fine-510

grained evaluation results, the model shows a con-511

sistent improvement across the training process,512

demonstrating the effectiveness of our training513

methods. We also find that the reinforcement train-514

ing is quite efficient compared with supervised515

fine-tuning, easily outperforming the baseline when516

halfway through training.517

Table 4 demonstrate the effectiveness of each518

component for the training. Compared with519

the original model, the model training with520

ORM improves from 28.51% to 31.15% on521

the SchemaBench, demonstrating the effectiveness522

of reinforcement training. Adding ToS into training523

dramatically improves the performance, reaching524

up to 44.89% in the complex schema following.525

The fine-grained validator shows its superior per-526

formance when compared witthe h trivial outcome527

validator, with a performance up to 35.59% in test-528

ing. Besides, we also observed that across all set-529

tings, the performance on MATH-500 and ARC-C530
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Figure 4: Reinforcement training accuracy on complex
schema subset for LLaMA-3.2 3B. The red line is the
fine-tuning baseline.

obtained certain improvements. We consider this 531

to be a benefit from the escaping training, which 532

reduces the parsing error and brings improvements. 533

6 Conculsion 534

This study introduces the SchemaBench benchmark 535

to evaluate model performance in generating valid 536

JSON strings for complex schemas. Our approach 537

is driven by online schema reinforcement learning 538

and introduces the novel concept of Thoughts of 539

Structure (ToS), resulting in up to a 16% improve- 540

ment in JSON generation accuracy. We demon- 541

strate that this method not only enhances struc- 542

tured generation tasks but also preserves general 543

reasoning capabilities, as shown by improved per- 544

formance on downstream benchmarks like BFCL. 545
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Ethical Statement546

We honor the Code of Ethics and we strictly fol-547

lowed ethical standards in the construction of our548

dataset. No private data or non-public information549

is used in our work.550

Limitation551

This work has two limitations. First, while our fo-552

cus is currently on generating JSON strings based553

on JSON schema, exploring other formats such as554

YAML or XML would be valuable for further gen-555

eralized study. Second, the sampling stage in the556

current Schema Reinforcement Learning pipeline557

is time-consuming. We see potential for improv-558

ing the efficiency of this process through further559

analysis.560
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Appendix876

A Schema-constrained Reasoning877

GSM8K:878

{
"type": "object",
"properties":{

"thought": {
"type": "string",
"description": "put your thought here"

},
"answer": {

"type": "number",
"description": "put your answer here,

integer only"↪→
}

},
"required": ["thought", "answer"],

}

MATH500:879

{
"type": "object",
"properties":{

"thought": {
"type": "string",
"description": "put your thought here"

},
"answer": {

"type": "number",
"description": "put your answer here"

}
},
"required": ["thought", "answer"],

}

MMLU:880

{
"type": "object",
"properties": {

"thought": {
"type": "string",
"description": "put your thought here"

},
"answer": {

"type": "string",
"enum": ["A", "B", "C", "D"],
"description": "put your choice here"

}
},
"required": ["thought", "answer"],

}

ARC-Challenge:881

{
"type": "object",
"properties": {

"thought": {
"type": "string",
"description": "put your thought here"

},
"answer": {
"type": "string",
"description": "put your answer here,

Options only, e.g. A",↪→

"enum": ["A", "B", "C", "D", "E", "F", "G",
"H", "I", "J", "K", "1", "2", "3", "4",
"5", "6", "7", "8", "9", "10"]

↪→
↪→

}
},
"required": ["thought", "answer"],

}

B Benchmark Prompts 882

System prompt template: 883

"""You should generate answer with given JSON
format.↪→

<Schema> Here are the json-schema of the content
format:↪→

{schema}
</Schema>"""

For Complex Schema and Custom Formats, the 884

user prompt is as follow: 885

"Please generate a valid JSON object according to
the JSON schema. Give your JSON object
directly, without ```."

↪→
↪→

User prompt in Escape Translation: 886

"Please generate a valid JSON object according to
the JSON schema, remember your special token
here: {special_token} Give your JSON object
directly, without ```."

↪→
↪→
↪→

As for tasks in Schema-constrained Reasoning, we 887

simply use the query in dataset as the user prompt. 888

C Tool Callings Conversion 889

We use the following code to convert tools to a 890

formal JSON schema. 891

1 def convert_function_to_schema(functions):
2 schema = {
3 "$defs": {
4 "tools": {
5 "description": "Available tools you could

use.",↪→
6 "oneOf": []
7 }
8 },
9 }

10 for func in functions:
11 # aligning informal types to standard JSON

schema basic data types↪→
12 # e.g. 'dict' -> 'object', 'list' -> 'array'
13 new_func = recurrsive_convert_type(func)
14 schema["$defs"][func["name"]] = {
15 "type": "object",
16 "description": func.get("description", ""),
17 "properties": {
18 func["name"]: new_func["parameters"]
19 },
20 "required": [func["name"]],
21 "additionalProperties": False
22 }
23 schema["$defs"]["tools"]["oneOf"].append({

"$ref":
"#/$defs/{}".format(func['name'].replace('~',
'~0').replace('/', '~1')) })

↪→
↪→
↪→

12



24 schema["oneOf"] = [
25 {
26 "type": "array",
27 "description": "Calling multiple tools in a

array.",↪→
28 "items": {
29 "$ref": "#/$defs/tools"
30 },
31 "minItems": 2
32 },
33 {
34 "$ref": "#/$defs/tools"
35 },
36 {
37 "type": "string",
38 "description": "If none of the function can

be used, point it out here. If the
given question lacks the parameters
required by the function, also point it
out here."

↪→
↪→
↪→
↪→

39 }
40 ]
41 jsonschema.Validator.check_schema(schema)
42 return schema
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