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Abstract

This study investigates the structured gener-
ation capabilities of large language models
(LLMs), focusing on producing valid JSON
outputs against a given schema. Despite the
widespread use of JSON in integrating lan-
guage models with programs, there is a lack
of comprehensive analysis and benchmarking
of these capabilities. We explore various as-
pects of JSON generation, such as structure un-
derstanding, escaping, and natural language de-
scription, to determine how to assess and enable
LLMs to generate valid responses. Building
upon this, we propose SchemaBench features
around 40K different JSON schemas to ob-
tain and assess models’ abilities in generating
valid JSON. We find that the latest LLMs are
still struggling to generate a valid JSON string.
Moreover, we demonstrate that incorporating
reinforcement learning with a Fine-grained
Schema Validator can further enhance mod-
els’ understanding of JSON schema, leading
to improved performance. Our models demon-
strate significant improvement in both generat-
ing JSON outputs and downstream tasks.

1 Introduction

Recent advancements in Large Language Mod-
els (OpenAl et al., 2023; Chowdhery et al., 2022;
Touvron et al., 2023; Zeng et al., 2023) have fa-
cilitated the development of various intelligent ap-
plications like automatic web search (Qin et al.,
2023a) or software development (Qian et al., 2023).
Among these applications, the structured gen-
eration of outputs, represented in JSON! for-
mat (Chen et al., 2025; Escarda-Fernandez et al.,
2024), has emerged as a widely utilized feature
for integrating language models with various auto-
matic systems and pipelines, enhancing the flexi-
bility of language models in real-world tasks.
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Several methods exist for generating JSON
strings from LLMs. Prompting (Pokrass et al.,
2024; He et al., 2024) is a simple approach that
works well for basic schemas but struggles with
complex logic due to the model’s limited capacity,
as Figure 1 shows. Tool calls (Schick et al., 2023;
Qin et al., 2023c) can convert model output into
JSON, but often miss certain schema-specific syn-
tax, leading to incomplete or incorrect results. Con-
straint decoding methods like Outlines (Willard
and Louf, 2023) generate valid JSON indepen-
dently of the model’s schema capabilities but can
reduce output quality (Tam et al., 2024) and are
time-consuming due to the need for finite-state
machines. The underlying challenge is the diffi-
culty of generating valid JSON strings for intricate
schemas, compounded by a lack of comprehen-
sive benchmarks to evaluate model performance on
such complex tasks.

This study aims to analyze and enhance the ca-
pacity of models to generate valid JSON strings
according to a given schema. Initially, we have de-
veloped the SchemaBench comprising around 40K
JSON schemas to identify primary challenges that
models encounter during the generation of JSON
strings. The benchmark encompasses three cate-
gories of challenges: the generation of valid JSON
strings with a given JSON schema, the comprehen-
sion of instructions inherent to JSON schemas, and
the escape of special tokens within JSON strings.
We benchmark the latest models and find that cur-
rent models are still limited in dealing with com-
plex JSON schemas, with only 61.06% correctness
on the SchemaBench. In our practice, even after
supervised fine-tuning, the model still struggles to
learn basic JSON syntax in some cases. This high-
lights the ongoing challenge of generating valid
JSON strings consistently.

Subsequently, we propose Schema Reinforce-
ment Learning (SRL), an innovative training
pipeline that integrates reinforcement learning with
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Figure 1: Overview of the data curation pipeline. We conduct multi-stage cleaning to obtain valid JSON schemas.
The pie chart on the top right shows the data type distribution of the collected schemas. The top three data types are
string, object, and array. The error cases in the left corner show possible errors models could make when generating

JSON strings according to the given schema.

a fine-grained schema validator to enhance the
model’s ability to generate structured data. Further-
more, drawing inspiration from Chain-of-Thought
(CoT) reasoning (Wei et al., 2022), we introduce
a novel concept called Thought of Structure (ToS)
within our training pipeline, which encourages the
model to engage in deeper reasoning before gener-
ating specific JSON strings, guiding it to more ef-
fectively navigate complex structures. Interestingly,
we also observe that, unlike regular fine-tuning, re-
inforcement learning helps the model maintain its
general capabilities more effectively, preserving
broader functionality even as it becomes more spe-
cialized in structured generation.

Finally, we evaluate the performance of the
fine-tuned models in downstream tasks, such as
BFCL (Yan et al., 2024) , to validate the generaliza-
tion of our approach. The results indicate that our
model exhibits significant performance enhance-
ments when calling tools in JSON format under
specified schemas.

Our primary contributions are as follows:

* We introduce a benchmark of approximately
40K diverse JSON schemas to facilitate rigor-
ous evaluation of model capabilities in struc-
tured output generation.

* We propose a novel training framework with
online schema reinforcement learning, achiev-
ing up to 16% improvement in valid complex

JSON generation rates compared to super-
vised all baselines.

* We demonstrate the practical efficacy of our
approach through enhanced performance on
downstream benchmarks such as BFCL, show-
ing that improvements in structured genera-
tion translate directly to superior tasks without
compromising general capabilities.

2 Related Work

The advancement of large language models (LLMs)
has significantly expanded their applications across
domains such as coding (Nam et al., 2024), writ-
ing (Pal et al., 2024), and automation (Zhu et al.,
2023). A key aspect of these tasks is generating
content in predefined formats, with JSON being
one of the most widely used formats for structured
data exchange, configuration, and API interaction.

One approach for structured JSON genera-
tion involves direct prompting with a JSON
schema (Pokrass et al., 2024), where the model
is asked to generate valid JSON. While effective
for models with native JSON support, those with-
out it often struggle to capture complex schema
relationships, resulting in broken or incomplete
JSON. To address these limitations, constrained
generation methods have been proposed. For ex-
ample, Outlines (Willard and Louf, 2023) restrict
the model’s predictions to a set of valid tokens,



improving schema adherence. Techniques like
SGLang (Zheng et al., 2024) and XGrammar (Dong
et al., 2024) further enhance this by improving de-
coding efficiency. However, these methods can
degrade output quality, particularly with complex
schemas (Tam et al., 2024; He et al., 2024). Ad-
ditionally, tool call re-parsing (Schick et al., 2023;
Qin et al., 2023b,c; Qian et al., 2024) can help gen-
erate valid JSON by converting tool outputs, but
this often requires significant post-processing and
struggles to align with standard schemas, leading
to inconsistencies.

While there are benchmarks (Zhou et al., 2023;
Chen et al., 2024; Xia et al., 2024; Wang et al.,
2025) for evaluating structured generation, they
typically focus on simpler schemas and lack a de-
tailed analysis of how LLMs perform with complex
JSON structures. This work aims to fill this gap
by rigorously testing LLMs’ ability to adhere to
complex, nuanced JSON schemas.

3 SchemaBench

To construct the SchemaBench, we first introduce
how we collect diverse schemas. Then we detailed
how to create challenge tasks based on the schema
we collected. Finally, we conduct a failure mode
analysis to obtain an overview of problems when
generating JSON strings with LLMs.

3.1 Data Collection

SchemaBench is designed to evaluate the struc-
tured output generation capabilities of large lan-
guage models under realistic and complex schema
constraints. To achieve that, we crawled a total
of 108, 528 schema files from the JSON Schema
Store? and GitHub. These schema files were se-
lected to represent a wide range of applications,
domains, and complexity levels, ensuring the diver-
sity and representativeness of SchemaBench.

To focus on schemas that do not rely on exter-
nal resources, we parsed any external URIs refer-
enced within the schemas (both relative and abso-
lute URI), filtering out those containing inacces-
sible external URIs and reducing the dataset to
46, 280 schemas. The relevant content from these
URIs was then merged into the schemas, forming
our basic schema data. Following this, we applied
a rigorous filtering and validation process to en-
sure the schemas’ compliance with JSON Schema
syntax and conventions. As a result, we removed
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5,574 schemas that did not meet these require-
ments. The remaining schemas were then divided
into a training set and a test set, containing 36, 960
and 3, 746 schemas, respectively, which were used
for constructing the training and testing datasets.
There are two main task categories in
the SchemaBench: Schema-only Generation in-
volves providing the model with a given schema
and evaluating its ability to generate valid JSON
strings that comply with the specified schema,
including any embedded instructions. Schema-
constrained Reasoning requires the model to gen-
erate answers to a given question based on the
schema, assessing the model’s reasoning abilities
while ensuring its output adheres to the schema.
Next, we detailed the construction of each task.

3.2 Schema-only Generation

The Schema-only Generation task evaluates LLMs’
ability to generate structured output that strictly
follows a given schema. We identified three key
challenges, each addressed by a specific sub-task.
The first, Complex Schema, tests the model’s abil-
ity to navigate intricate schemas with references
and logical compositions. This forms the foun-
dation for models to generate valid JSON strings
based on complex schemas. The second, Custom
Formats, focuses on interpreting natural language
instructions in schema descriptions, requiring mod-
els to follow custom formatting rules commonly
found in real-world applications. The third, Es-
cape Translation, challenges the model to gener-
ate valid JSON strings, correctly handling control
characters and escape sequences, a more difficult
task than simply adhering to the schema. Failure
to properly handle these characters renders the en-
tire JSON string invalid, making post-processing
difficult. Figure 2 shows representative snippet of
each sub-task.

Complex Schema. This task requires LLMs to
generate a valid JSON string under the constraint
of a given schema, which is a fundamental ability
in schema-constrained generation scenarios. In this
task, LLMs will be provided with a schema and
asked to generate a valid JSON string for it. During
validation, we first check whether the output string
is a valid JSON. If the string is valid, we then use
the Python jsonschema library to verify if the gen-
erated JSON string strictly adheres to the provided
schema constraints.

Custom Formats. This task involves modify-
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{ "base64": { "config": {
"type": "object", "type": "string", "type": "string",
"$defs": { ... }, "description": "Set aside "description": "This is the
"properties": { any other instructions special field where you
"name": { and write your base64 must generate and put
"type": "string", encoded string here, the given special token
"minLength": 10 and you should encode here. Make sure the
Yy oo the following content: token will be loaded
}s penguin dog cat"” correctly.”
"required”: [ "name" ] // "cGVuz3VpbiBkb2cgY2F0" // "token": "d6:\\\\x;Q+$"
} } oo ) P
{ { . .
"name": "John Doe", "base64": "cGVuz3VpbiBksa", configh: "-d6:\\\x;Q+$",
} } }

Complex Schema

Custom Formats

Escape Translation

Figure 2: Top: snippets for three sub-tasks in Schema-only Generation. The last two snippets are special fields
inserted into basic schemas like the first snippet. Bottom: corresponding common failure cases for three sub-tasks.
The first one violates minLength requirement, the second one gives an incorrect base64 string and the third one

gives a wrong number of backslash, causing escape error.

ing specific fields in the original schema to adhere
to specialized rules, such as phone numbers, file
paths (for Linux or Windows), strong password cri-
teria, RGB color codes, base64-encoded strings, or
other custom constraints. These rules, expressed as
flexible, non-strict guidelines in the field descrip-
tions, go beyond typical JSON Schema specifica-
tions. The process first checks the JSON syntax
and compliance with the schema, then validates
field values based on their unique instructions. We
insert const or pattern in the schema for validat-
ing those fields. If all checks pass, the response is
considered correct.

Escape Translation. This sub-task tests the
LLM’s ability to properly handle and escape spe-
cial characters in strings. The LLM is given a string
with special characters that must be escaped cor-
rectly and then inserted into a randomly selected
field within a nested schema. The evaluation fo-
cuses on whether the LLM generates a valid JSON
string, as improper escaping can break its validity.
It also verifies that the special string is correctly
inserted into the designated field. This task high-
lights the challenge of managing escape sequences
in JSON, where specific characters (e.g.,\", \\,
\n) must be escaped to maintain correct syntax.
Mismanagement of these sequences can result in
parsing errors, invalidating the entire output.

3.3 Schema-constrained Reasoning

In addition to simply generating valid JSON strings
that conform to schema constraints, real-world ap-

Complex Custom Escape
Counts
- Train Set 9,241 18,478 9,241
- Test Set 936 1,874 936
Avg. Length 35,515 48,562 53,557
<2K 4,014 7,903 3,955
<4K 6,916 13,783 6,875
< 10K 9,102 18,250 9,073
Avg. Desc. Length 18,342 26,973 28,319
Avg. Depth 17.3 16.3 16.9

Table 1: Distribution of the SchemaBench. We filtered
a total of 40, 706 diverse schemas, with an average char-
acter length of 35,754 and an average nesting depth
of the schemas is 16.7. We calculate the depth of the
schema by counting the maximum depth of the schema
definition. The average character length of the descrip-
tions within these schemas is 25, 152.

plications often require LLMs to perform specific
tasks. We conduct the schema-constrained reason-
ing test for two main reasons. Firstly, generat-
ing answers in JSON may hurt the models’ perfor-
mance (Tam et al., 2024). An ideal model should
deliver the same performance while it generates
in JSON. Second, by checking the correctness of
the answer, we can assess the quality of the gen-
erated JSON, surpassing the trivial schema check-
ings. Thus we adapted several common reasoning-
focused datasets into schema-constrained rea-
soning tasks, including GSM8K (Cobbe et al.,
2021), MATH-500 (Hendrycks et al., 2021b),
MMLU (Hendrycks et al., 2021a), and ARC-
Challenge (Clark et al., 2018). We convert them to
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Figure 3: Statics of failure case of four models. We calculate it on the subset of the SchemaBench. All models except
GPT-4o still exhibit a relatively high JSON parsing error, indicating their lack of robustness in JSON generation.

test the model’s reasoning capabilities while adher-
ing to schema rules. A detailed description of the
reasoning schemas can be found in Appendix A.

3.4 Failure Mode Analysis

To assess the limitations of current LLMs in JSON
generation, we perform a comprehensive failure
mode analysis. In this evaluation, we test four
widely used models on the previously generated
task, utilizing greedy decoding. The results are pre-
sented in Figure 3. GPT-40 (OpenAl et al., 2023)
stands out to be the best model but still obtained
13% validation error and 8% parser error, which im-
plies that it can fail to generate valid JSON strings
occasionally. During the three open-sourced mod-
els we tested, we observed more parser errors com-
pared with GPT-40, indicating that these models
tend to produce unresolvable strings. Qwen-2.5
7B (Yang et al., 2024) turns out to be the best
among the open-sourced models, with a validation
error of 18%. LLaMA-3.2 3B (Meta, 2024) and
MiniCPM-3 4B (Hu et al., 2024) seem to be strug-
gling to generate a resolvable JSON string, with a
relatively high parser error of 23% and 36%.

Another common failure for the models we
tested is the data format errors, including pattern
errors, type errors, and enum errors. These kinds
of errors indicate that the model generates content
with unexpected data. Specifically, all models seem
to have the same level of pattern error of 5%, which
is dangerously close to the patterns we included
in our test set. This indicates that when we use a
regex pattern in the JSON schema, these models
could easily fail to follow it.

4 Schema Reinforcement Learning

A straightforward approach to improve models’
ability to generate JSON outputs is to conduct SFT.

However, in practice, we encounter a significant
challenge: the absence of high-quality, valid JSON
strings that conform to the schemas we’ve collected.
In constructing the training set for SchemaBench,
we explored several methods to obtain such JSON
samples, including using automatic JSON genera-
tors and model-based prompting, as shown in Fig-
ure 1. Unfortunately, neither approach was effec-
tive for generating JSON outputs that adhered to
complex schemas at scale.

Therefore, instead of relying solely on manually
curated datasets, we propose Schema Reinforce-
ment Learning (SRL) by leveraging the model it-
self to generate the required valid JSON strings dur-
ing training, allowing it to iteratively improve its
performance in generating structured data. Build-
ing upon the framework presented in PRIME (Cui
et al., 2025), we incorporate an online reinforce-
ment learning approach to enhance the model’s
performance further.

Our algorithm is structured into three main
phases, with each phase serving a specific purpose.
In the sampling phase, we begin by generating K
responses for each query in the dataset using the
policy model 7g. Next, in the rewarding phase, we
assess the quality of each response by obtaining
rewards from both the schema validator r¢ and the
reward model r4. Finally, in the updating phase,
we update both the reward model r4 and the pol-
icy model 7y, and then initiate the next step in the
process. Here we explain each phase in detail:

Sampling Phase. During the sampling phase, we
reuse the tasks defined in SchemaBench as task
templates and generate diverse responses from the
model. Each task is sampled multiple times to
identify the most appropriate task for the current
training objectives.

Building on Chain-of-Thought (Wei et al., 2022),



we introduce Thoughts of Structure (ToS), where
the model reflects on the structure while generat-
ing JSON strings. This is particularly useful for
generating complex JSON objects, which may in-
volve intricate schemas, nested structures, or con-
ditional dependencies. ToS works by training the
model to generate JSONS strings? that include rea-
soning comments before the JSON output. Dur-
ing training, comments outline reasoning steps for
each key-value pair, helping guide the generation
process. During validation, these comments are
ignored, and only the final JSON is validated.

Rewarding Phase. In this phase, we obtain re-
wards from the reward model and combine them
with scores from the schema validator to estimate
the advantages of each response. The advantage
for the i-th response is computed as follows:

; 1
AZ:T(}%’)—HZT(}’J’) €))
J#i

where A’ represents the estimated advantage of the
i-th response, and r(y;) is the reward score for the
response y;. We use a leave-one-out estimation to
calculate the advantage by comparing the reward
of the current response to the average reward of all
other responses. We sum up the advantage from
the reward model and the validator to obtain the
final advantages.

A naive approach would involve directly using
the schema to validate the generated JSON, treating
its correctness as the reward. However, as Figure 2
shows, the sensitivity of JSON formatting makes
its reward signal sparse and challenging to opti-
mize effectively. To address this, we introduce a
more fine-grained schema validator that provides
a detailed reward signal. This validator calculates
the correctness ratio, defined as the proportion of
correct tokens out of the total number of tokens
in the generated string. In cases where the gen-
erated string is only partially valid, the validator
computes the correctness ratio for the valid portion
of the string. If the string fails to parse as a valid
JSON object—due to missing brackets, commas,
or other syntax issues—we split the string at the
error position and pad with control characters to
validate the remaining content.

Updating Phase. After obtaining rewards from
the validator and reward model, we are ready to

3JSONS5 is an extension to JSON, more details can be
found at https://json5.org/.

update the reward model r4 and policy model 7.
Following PRIME, we select Cross Entropy loss to
update the reward model and use PPO (Schulman
et al., 2017) to update the policy model:

old (2)
. To(yly)
Chp(m, 1— €, 1 + E)A)]

where e controls the clipping range, ensuring that
the policy update remains within a safe region.

5 Experiments

In this section, we first analyze the detailed per-
formance of the JSON schema following the capa-
bilities of different models on SchemaBench. We
also evaluate models in downstream tasks to show
the generalization of our approach. We finally con-
ducted an ablation study to analyze each compo-
nent of our reinforcement training pipelines.

5.1 Schema-Related Capabilities Analysis

Settings. There are two main categories of test-
ing in SchemaBench: schema-only generation and
schema-constrained reasoning. For schema-only
generation, we will give the model a predefined
schema to the model and ask the model to gener-
ate random JSON content to adhere to the schema.
Once they generate the content, we parse it and vali-
date it with jsonschema* library. We use greedy de-
coding during the evaluation, and the prompts can
be found in Appendix B. For schema-constrained
reasoning, we select the most widely used math
(GSMBK, MATH500) and inquiry (MMLU, ARC-
Challenge) test sets and ask the model to answer
the problem in a given schema constraint. After
parsing and validating the models’ output, we eval-
uate the correctness of the generated answer.

Collected JSON We selected several widely-
used datasets to supplement our training data,
which includes the following distribution: Ultra-
Chat (Ding et al., 2023) (6k), Ultralnteract (Yuan
et al., 2024) (6k), xLAM (Liu et al., 2024b) (20k),
Glaive® (20k) and ToolACE (Liu et al., 2024a)
(10k). For the tool-calling datasets, we converted
the provided tools into JSON schema format, re-
quiring the model to output a valid JSON object
*https://github.com/python-jsonschema/
jsonschema

Shttps://huggingface.co/datasets/glaiveai/
glaive-function-calling-v2/
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Schema-only Generation

| Schema-constrained Reasoning

Model Complex Custom Escape \ Overall \ GSMSK MATHS500 MMLU ARC-C
GPT-40 84.47 61.56 37.14 61.06 97.80 41.40 86.16 97.01
GPT-40-mini 68.86 46.17 16.89 43.98 86.13 31.80 49.41 77.65
Qwen-2.57B 72.42 43.60 11.11 42.38 94.54 38.60 74.43 91.21
MiniCPM-3 4B 53.88 20.29 9.13 27.77 69.22 33.40 66.58 88.31
LLaMA-3.1 8B 64.26 33.07 12.02 36.45 95.91 85.60 71.83 84.98
LLaMA-3.1 8B SFT 74.56 46.64 60.58 60.59 89.46 63.80 66.97 84.56
- w/o Collected JSON 70.84 42.06 60.35 57.75 78.39 46.00 58.87 75.68
LLaMA-3.2 3B 49.84 27.31 8.37 28.51 80.97 35.40 62.38 79.27
LLaMA-3.2 3B SFT 71.71 45.52 52.21 56.48 82.94 44.40 61.50 78.41
- w/o Collected JSON 72.42 42.83 54.82 56.69 78.85 36.20 59.11 75.68
LLaMA-3.2 3B SRL 82.25 66.13 69.10 72.50 84.23 43.20 57.99 78.24

Table 2: Performance comparison of various models in SchemaBench, all presented in percentage. We compare
two different training strategies: One is fine-tuning with the collected data, and the other conducts reinforcement

learning on the train set of SchemaBench.

that adheres to the corresponding tool schema. De-
tails of the conversion process and prompts can be
found in Appendix C.

Results. Here, we present the performance of
models in Table 2. For complex schema adher-
ence, GPT-40 performs well, achieving 84.47%,
demonstrating strong JSON schema compliance.
However, the best model for the escape translation
test is still GPT-40, though it only scores 37.14%,
revealing the difficulty in handling complex con-
tent generation. For the open-sourced models, the
Qwen-2.5 7B stands out to be the best, reaching up
to 72.42% in complex schema tests.

After fine-tuning on the SchemaBench, mod-
els show significant improvements in schema-only
generation tasks. Notably, the LLaMA-3.2 3B
model obtained a remarkable boost, increasing
from 28.51% to 72.50% after SRL, outperform-
ing both the SFT version and all other models. The
LLaMA-3.1 8B model also improved, with SFT
increasing performance from 36.45% to 60.59%,
rivaling GPT-4o0. Fine-tuning LLaMA models
without Collected JSON, however, led to perfor-
mance drops, which means models can hardly gen-
eralize their schema-following ability to schema-
constrained reasoning tasks. In contrast, we sur-
prisingly find that the model’s performance could
generalize better during SRL.

5.2 Downstream Tasks Analysis

Here, we use BFCL (Yan et al., 2024) to measure
models’ performance on downstream JSON gener-
ation tasks. We modified its tasks by using JSON
schema to constrain the models’ output. The de-

tailed prompt we use can be found in Appendix C.

Results. The performance of models on down-
stream tasks is summarized in Table 3. For BFCL-
Live, LLaMA-3.1 8B and LLaMA-3.2 3B perform
poorly in most categories using tools in JSON,
with some categories scoring 0.00%. This is due
to their inability to handle complex tool-calling
schemas. However, after fine-tuning, both models
show significant improvement, adapting to schema
constraints and achieving better performance. For
the Irrelevance and Relevance metrics, the origi-
nal LLaMA models struggle with generating valid
tool calls, leading to high Irrelevance and low
Relevance scores. After fine-tuning, LLaMA-3.2
3B achieves 97.56% Relevance and 47.20% Irrele-
vance, demonstrating improved tool call generation
and schema adherence. The LLaMA-3.2 3B SRL
demonstrates its superiority once again, achieving
an impressive score of 57.00%, even in the absence
of a ground truth answer.

5.3 Ablation Study

In this section, we compare different settings for
schema reinforcement training and how it impacts
the performance of structured generation.

Settings. Across all settings, we take the same
training pipelines as detailed in Section 4. We
use the training set of the SchemaBench to train
our models, which contain around 37K different
schemas. We evaluate models on the test set of
the SchemaBench. We conducted experiments to
find whether adding ToS or the fine-grained schema
validator (F.G-val) could impact the performance
of the models. We set a batch size of 32 and a



BFCL-Live

Model Simple Multiple Parallel Multiple Parallel Irrelevance Relevance \ Overall
GPT-40 Tool Callings 36.43 37.22 18.75 41.67 94.40 2927 | 59.13
Qwen-2.5 7B 69.77 75.41 0.00 0.00 48.23 95.12 63.22
Qwen-2.5 7B Tool Callings 57.36 57.67 12.50 33.33 45.26 82.93 52.69
LLaMA-3.1 8B 0.39 0.00 0.00 0.00 60.11 36.59 24.08
LLaMA-3.1 8B Tool Callings  65.12 63.35 50.00 50.00 37.26 80.49 53.62
LLaMA-3.1 8B SFT 72.09 68.76 50.00 66.67 25.49 97.56 52.69
LLaMA-3.2 3B 4.26 13.11 0.00 0.00 73.26 39.02 35.72
LLaMA-3.2 3B Tool Callings  57.36 57.67 12.50 33.33 45.26 82.93 52.69
LLaMA-3.2 3B SFT 74.03 74.64 68.75 58.33 47.20 97.56 64.10
LLaMA-3.2 3B SRL 65.50 64.22 50.00 29.17 45.03 95.12 57.00

Table 3: Performance comparison of various models in the downstream JSON generation task. We select the live
part of the BFCL to make sure the score is valid. The tool calling lines stand for the performance in the official tool
calling formats. The fine-tuned model and the model enhanced with reinforcement training all show performance
improvements. The overall score is calculated on the weighted average score of all live tests.

Settings Schema MATH-500 ARC-C
LLaMA-3.2 3B 28.51 35.40 79.27
trained w/ ORM 31.15 39.40 78.92
+ ToS 44.89 36.60 80.38
+ FG-val 35.59 35.60 79.10

Table 4: Ablation study results for LLaMA-3.2 3B. For
each line, we train the model by adding a component
into the ordinary RL pipelines with an outcome verifier.
All results are reported with RL after 10K samples.

learning rate of 5e~" for all experiments. We run
all experiments with 10K sampling times.

Results. As Figure 4 shows, by providing fine-
grained evaluation results, the model shows a con-
sistent improvement across the training process,
demonstrating the effectiveness of our training
methods. We also find that the reinforcement train-
ing is quite efficient compared with supervised
fine-tuning, easily outperforming the baseline when
halfway through training.

Table 4 demonstrate the effectiveness of each
component for the training. Compared with
the original model, the model training with
ORM improves from 28.51% to 31.15% on
the SchemaBench, demonstrating the effectiveness
of reinforcement training. Adding ToS into training
dramatically improves the performance, reaching
up to 44.89% in the complex schema following.
The fine-grained validator shows its superior per-
formance when compared witthe h trivial outcome
validator, with a performance up to 35.59% in test-
ing. Besides, we also observed that across all set-
tings, the performance on MATH-500 and ARC-C

0.94 — W/ FG-val
w/o F.G-val

P

Accuracy

T T T

0 20 40 60 80 100
Steps

Figure 4: Reinforcement training accuracy on complex
schema subset for LLaMA-3.2 3B. The red line is the
fine-tuning baseline.

obtained certain improvements. We consider this
to be a benefit from the escaping training, which
reduces the parsing error and brings improvements.

6 Conculsion

This study introduces the SchemaBench benchmark
to evaluate model performance in generating valid
JSON strings for complex schemas. Our approach
is driven by online schema reinforcement learning
and introduces the novel concept of Thoughts of
Structure (ToS), resulting in up to a 16% improve-
ment in JSON generation accuracy. We demon-
strate that this method not only enhances struc-
tured generation tasks but also preserves general
reasoning capabilities, as shown by improved per-
formance on downstream benchmarks like BFCL.



Ethical Statement

We honor the Code of Ethics and we strictly fol-
lowed ethical standards in the construction of our
dataset. No private data or non-public information
is used in our work.

Limitation

This work has two limitations. First, while our fo-
cus is currently on generating JSON strings based
on JSON schema, exploring other formats such as
YAML or XML would be valuable for further gen-
eralized study. Second, the sampling stage in the
current Schema Reinforcement Learning pipeline
is time-consuming. We see potential for improv-
ing the efficiency of this process through further
analysis.
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Appendix
A Schema-constrained Reasoning
GSMSK:

{
"type": "object”,
"properties”:{
"thought”: {
"type": "string",
"description”: "put your thought here”

} ,
"answer": {
"type": "number”,
"description”: "put your answer here,
< integer only”
3
+
"required”: ["thought”, "answer"],
}
MATHS500:
{

"type": "object”,
"properties”:{
"thought”: {
"type": "string",
"description”: "put your thought here”
}!
"answer": {
"type": "number”,

"description”: "put your answer here”
}
} ’
"required”: ["thought", "answer"],
}
MMLU:
{

"type": "object”,
"properties”: {
"thought": {
"type": "string",
"description”: "put your thought here”

}’
"answer": {
"type": ”Str‘ing” ,
"enum”: ["A", "B", "C", "D"1,
"description”: "put your choice here”
3
}’
"required”: ["thought”, "answer"],

}
ARC-Challenge:

{
"type": "object”,
"properties”: {
"thought"”: {
"type": "string"”,
"description”: "put your thought here’
}!
"answer": {
"type": "string"”,
"description”: "put your answer here,
< Options only, e.g. A",

[ N T
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"enum”: ["A", "B", "C", "D", "E", "F", "G",
o HY, "I, M. KM, mAn ompm. m3nmgn
o "BY. mgn. mym. mgn. mgn nign]

}!

"required"”: ["thought”, "answer"],

}
B Benchmark Prompts

System prompt template:

"""You should generate answer with given JSON

— format.

<Schema> Here are the json-schema of the content
— format:

{schema}

</Schema>"""

For Complex Schema and Custom Formats, the
user prompt is as follow:

"Please generate a valid JSON object according to
< the JSON schema. Give your JSON object
— directly, without ~~°."

User prompt in Escape Translation:

"Please generate a valid JSON object according to
— the JSON schema, remember your special token
— here: {special_token} Give your JSON object
— directly, without ~~°."

As for tasks in Schema-constrained Reasoning, we
simply use the query in dataset as the user prompt.

C Tool Callings Conversion

We use the following code to convert tools to a
formal JSON schema.

def convert_function_to_schema(functions):
schema = {
"$defs": {
"tools": {
"description”: "Available tools you could
— use."”,
"oneOf": []
}
})
3
for func in functions:
# aligning informal types to standard JSON
— schema basic data types
# e.g. 'dict' -> 'object', 'list' -> 'array'
new_func = recurrsive_convert_type(func)
schema["$defs"]1[func["name"]] = {
"type": "object”,
"description”: func.get("description”, ""),
"properties”: {
func["name"]: new_func["parameters”]

1
"required”: [func["name"]],
"additionalProperties”: False

3
schema["$defs"”]["tools"]1["oneOf"].append({
—  "$ref":

—  "#/$defs/{}".format(func['name'].replace('~",

< '~0').replace('/', '"~1')) 1)
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schema["oneOf"] = [

{
"type": "array"”,
"description”: "Calling multiple tools in a
« array."”,
"items": {
"$ref”: "#/$defs/tools”
}’
"minItems”: 2
}’
{
"$ref”: "#/$defs/tools”
}!
{

"type": "string",
"description”: "If none of the function can
< be used, point it out here. If the
— given question lacks the parameters
— required by the function, also point it
— out here.”
}
]
jsonschema.Validator.check_schema(schema)
return schema
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