FP=XINT: Representing Neural Networks via Low-Bit Series Basis Functions
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Abstract

Deep neural networks are often over-parameterized, result-
ing in prohibitive storage and computational costs. A fun-
damental question is whether a complex network can be re-
expressed in terms of a compact set of basis functions without
sacrificing accuracy. Motivated by this perspective, we aim to
approximate a dense model by decomposing it into a small
number of lightweight components that capture the essential
functional structure of the network. To this end, we propose
a series expansion framework that rewrites a neural network
as a linear combination of low-bit basis models. Within the
post-training quantization setting, the full-precision model is
expanded hierarchically at the tensor, layer, and model levels
into a structured set of basis functions. We theoretically prove
that this expansion converges exponentially to the original
model. Furthermore, we design AbelianAdd and AbelianMul
operations between isomorphic basis models, endowing the
expansion with an Abelian group structure that naturally sup-
ports commutative and parallel computation. Experimental
results across diverse architectures show that our series ex-
pansion method leverages a set of ultra-low-bit basis func-
tions, not only preserving full-precision performance without
the need for calibration data or fine-tuning, but also featuring
a parallel-friendly design that enables efficient deployment.

Introduction

Deep neural networks achieve remarkable success across
vision and language tasks, but their massive parameteriza-
tion makes deployment on resource-constrained platforms
extremely challenging. A classical mathematical principle
approximates a complex function f(x) is to represent it
as a weighted sum of simple basis functions, f(x) =
>, a;hi(z), as done in existing series expansions. Such
structured representations dramatically reduce complexity,
exploit inherent structure, and are parallelizable. This obser-
vation raises a fundamental and unanswered question:

Can a deep neural network itself be reconstructed by
a principled expansion over a small set of basis func-
tions, rather than stored as a dense, monolithic model?
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Figure 1: Series expansion methods are effective for tra-

ditional functions, but applying them to neural networks

presents many challenges. Our low-bit series expansion

based on Abelian groups overcomes these challenges.

Addressing this would transform our understanding and
compression of neural models on heuristic parameter ma-
nipulation. However, extending classical basis expansions
to modern deep networks encounters three critical obstacles
highlighted in Figure 1: (i) identifying suitable basis func-
tions amid the extreme dimensionality and nonlinearity of
these models; (ii) ensuring provable convergence of the ex-
pansion back to the original network; and (iii) devising an
algebraic framework that supports efficient, stable, and par-
allel composition of basis components.

While post-training quantization (PTQ) (Li et al. 2021;
Liu et al. 2023a; Shang et al. 2024; Li et al. 2025; Zhao et al.
2025) techniques incidentally produce low-bit submodels
that might serve as natural basis candidates, naively aggre-
gating these components fails to meet these requirements.
Such mixtures lack the expressive completeness to span the
original function space. This results in additive mixtures that
accumulate approximation errors rather than converge to the
original network. Moreover, without a principled algebraic
structure, each added submodel increases inference over-
head linearly, causing severe computational inefficiency and
hindering real-world deployment.

To bridge this gap, we propose the first series expan-
sion framework explicitly designed for neural network rep-
resentation. Our approach hierarchically decomposes a full-
precision (FP) model into multiple low-bit basis at ten-
sor, layer, and model levels. We theoretically prove expo-
nential convergence of these expansions, providing strong
guarantees on approximation quality. Key to our framework
is the introduction of novel Abelian algebraic operations



(AbelianAdd and AbelianMul), endowing the basis models
with a group structure that supports stable, commutative,
and parallelizable combination. This algebraic foundation
enables efficient inference by exploiting parallel hardware,
overcoming the linear overhead bottleneck of naive aggre-
gation. Empirically, our method demonstrates strong gen-
eralization and scalability across diverse architectures, in-
cluding CNNs, Transformers, LLMs. For example, our 4-bit
quantization of ResNet-50 achieves full-precision accuracy
(77.03%) without calibration data or retraining, highlight-
ing the practical viability of our approach. Beyond accu-
racy, we design and adapt a comprehensive parallel strat-
egy that boosts computational efficiency, paving the way for
scalable deployment in real-world resource-constrained en-
vironments. Our main contributions are as follows:

1) We introduce the first representation paradigm that re-
constructs trained network as a series expansion over low-bit
basis functions, rethinking how networks are approximated.

2) We develop a multi-level expansion with provable con-
vergence and define novel Abelian combination rules that
enable stable and parallel integration of basis models.

3) In a PTQ setting, our approach achieves full-precision
accuracy at 4-bit without calibration data or fine-tuning,
demonstrating that basis expansion can turn extreme quanti-
zation into a scalable deployment mechanism.

Notations
Symbol Meaning
f(x) Target function
hi(x) Basis function
Q; Expansion coefficient
Y E.eq Abelian group G of operations
model (sample) Network function
M FP tensor (weights/activations)
M Low-bit tensor
scale Quantization scale factor
Z Zero point
clip™, clipt Saturation clipping bounds
Mo Saturation error tensor
Mpsy Non-symmetric bias (all ones)
bias Scalar for asymmetric quantization
M, i-th basis tensor in expansion
R; Residual tensor at step ¢
W, A Weights and activations tensors
Wsa, Asa Saturation errors for W, A
Wi, A; i-th basis tensors for W, A

scaley i, scalea,;

Yij

Scale factors for i-th basis
scalew,; - scalea ;

mc;delm- Basis model with scales

model g Integer-parameter basis model

O] AbelianAdd operation

* AbelianMul operation

M Set of isomorphic low-bit models

Target Formulation
We aim to approximate a neural network function by a series

expansion of efficiently computable basis functions. For-
mally, classical expansions represent a function as

f(z) = Z aihi(z), M

where f(x) is the target function and h;(z) are basis func-
tions. Such linear combinations enable systematic approxi-
mation and naturally form an Abelian group structure (ad-
dition and multiplication), facilitating parallel computation
(e.g., AllReduce or MapReduce).

For neural networks, denoting model(sample) as the net-
work output, we seek a similar expansion:

model(sample) = Z model;(sample), 2)
2,66

where Z; operates in an Abelian group G, replacing clas-

sical addition and multiplication, and each moAdelZ- is a com-
putationally efficient basis model.

Traditional expansions like multidimensional Fourier se-
ries are intractable for high-dimensional inputs due to the
curse of dimensionality. Thus, we redesign the series expan-
sion to align with modern neural architectures, ensuring ef-
ficient, convergent, and parallel-friendly representation.

Low-Bit Series Expansion Algorithm

There are various strategies for selecting basis functions in
neural networks. For example, in quantization techniques,
low-bit models are widely used due to their computational
efficiency and hardware friendliness; hence, we choose the
low-bit version of the original model as the basis function.
Subsequently, we employ a tensor-layer-model approach to
progressively construct a series expansion framework and
prove its convergence to the original model.

Tensor Low-Bit Expansion
For an original tensor M = (mq,ma,...,my,), it can be
quantized into a low-bit representation. Taking the saturated
asymmetric quantization function as an example, the quan-
tization process is expressed as:

M= clip (int (ﬂ) + Z,clip—, clier) 3)
scale
where scale is the scaling factor that maps the floating-point
tensor M to integers and can be precomputed based on the
distribution of M. Z represents the zero point, which corre-
sponds to asymmetric quantization and can also be precom-
puted from M’s distribution. The clip(-) implements satu-
ration by truncating values outside the range [clip~, clip™].
Different quantization parameters lead to variations in the
basis functions used for quantization. Our series expansion
framework adapts to these variations and provides a unified
analysis. In asymmetric quantization, zero point Z acts as a
bias tensor bias X My,; for symmetric quantization, this
bias is zero. In saturated quantization, m; exceeding clip™
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Figure 2: The expansion of tensor multiplication, where A
and W are n X n tensor. The triangle represents the most
basic quantization method. In addition, our series expansion
framework also supports a variety of optional quantizations.

are clipped to clip™, and those below clip~ are clipped to
clip™, with the resulting error denoted as M, tensor. In
contrast, non-saturated quantization omits the clipping op-

eration. Based on the basis tensor M and its quantization
parameters, we use Theorem 1 to construct the expansion
terms and prove convergence to the original tensor M.

Theorem 1. M = M, + bias X Mz, + > ., scale; x

M;, where M, is the tensor whose all elements are 1. M;
is the tensor whose all elements are INT(X) data type and
scale; = 2% x scale;t1.

Proof. We adopt the unsaturated symmetric quantization
function as a general analytical form, while other quantiza-
tion methods are adapted by incorporating additional param-
eters based on their specific properties. First, we define the

residual term: R; = M —scale; x M7. According to the re-
mainder definition, all elements in R, have absolute values
smaller than scale;. Next, scales is computed based on the
distribution of R; to construct Ms. Similarly, the next resid-

ual term is defined as: Ry = M —scale; X M7 —scaleg X M.
By repeating this recursive process, we derive the follow-
ing series expansion: M = Y | scale;M; + R,41. The
max value in R, is smaller than ‘z‘ﬁff This procedure al-
lows for parallel computation, and the relationship scale; =
2™ x scales holds between the scales.

For saturated symmetric quantization, the clipping oper-
ation introduces errors, which are compensated by a sparse
tensor Ms,. Since Mg, can be precomputed and depends
on the data distribution, it is a constant tensor. This allows
the problem to be transformed into the unsaturated quan-
tization case. In non-symmetric quantization methods, the
primary distinction from symmetric quantization lies in the
inclusion of a bias term during the quantization process:
m; = bias + scale x m;, where m; represents the quan-
tized value of the original tensor m;. The calculation of
the bias term bias depends on the type of quantization: for

non-saturation quantization, bias = MmessMmin 4

. . . Jint —clin— .

for saturation quantization, bias = M + clip™.
Since bias remains the same for elements in the tensor, we
define the non-symmetry component M, ,, which has the

same dimensions as M. The recursive update is: M; =
bias x My, + scaley x My + Ry. where M, captures the
non-symmetric offset. The processing of the residual term
R; follows the same approach as in the non-saturation sym-
metric quantization case. Moreover, this derivation also es-
tablishes the construction process for M., My sy, and M;.
Assuming |R;| < scale; and each scale; reduces the
residual (|R;11| < |R;|), the residual R,, converges to zero
as n — 00, meaning lgn R,, = 0. This implies that the
n o0

series expansion strictly converges to M.

Single-layer Low-Bit Expansion

Modern deep networks are dominated by tensor multiplica-
tion, making it the natural focus of our low-bit expansion.
According to Theorem 1, both weights W and activations
A can be recursively decomposed as W = W, + bias,, X

Wnsy + E?:] Scalew,i Wia A= Asa + biaSA X Ansy +
Yoi scalea,; A;. We treat bias as scaleg, scale_; = 1,

Wiy as Wy, W, as W,l, Apsy as ﬁo, and A,, as ﬁ,l for
better description. Then we have the following Eq. 4, and we
term it as tensor multiplication low-bit expansion:

WA= (Wsq+ biasw X Whey + Z scalew,; X Wl)x

i=1

(Asa +biasa X Ansy + Z scalea i x ﬁz) “4)

i=1
= Z SCCLZeW@SCaleA’jWiA'j: Z 7,-]-Wigj.
i,j€[—1,n] 3,J€[—1,n]

We define 7;; £ scalew; scale 4 ;. The above result corre-
sponds to the general form of Theorem 1. For different quan-
tization basis functions, the series expansion offers flexible
options by adjusting W,, A, and bias. Figure 2 illustrates
the optimization strategies and available options for low-bit
tensor multiplication.

For a single layer of the neural network Layer(W, A),
we construct the low-bit expansion of the layer as follows:
1) Expanding the original tensor multiplication. 2) Choos-
ing one term of low-bit tensor multiplication, v;; W; A;, as a
kernel, build the layer Layer(W;, A;). Then we have single-
layer low-bit expansion as follows:

Z ~ij Layer(W;, A;). )

i,j€[—1,n]

Layer(W, A) =

We use lgyxe/rm to indicate Layer(W;, A;), and use

Lai/.erw to indicate v;; Layer (W, A;). S
Similarly, due to the properties of tensor multiplication

and the convergence of single-layer low-bit expansion, we

can easily obtain the convergence of single-layer expansion.

Model Low-Bit Expansion

A deep model consists of multiple layers. When expanded
into ¢ basis models, all layers whose computational kernels
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Figure 3: Our series expansion at different levels and specific
operation details. Finally, the FP model is expanded into the
sum of multiple INT models.

involve multiplications are decomposed, while parameter-
free layers are simply duplicated in each basis model. Thus,
the expansion of the model follows 3 steps: 1) expand all ten-
sor multiplications layer by layer; 2) duplicate the remaining
non-parametric layers and average their outputs; 3) construct

model; .j» where each modellj selects the term Layer
from the low-order expansion of its corresponding orlglnal
layer and aggregates them across all layers.

Establishing the Abelian Group. For the full model, we
focus on designing operations on basis models that allow
efficient parallelization across multiple expanded models.
Conventional multiply—add chains enforce strict sequential
dependencies, which prevent such fusion. To overcome this,
we introduce new operations so that the set of basis models
forms an Abelian group. This structure mirrors the commu-
tative reduction primitives (e.g., AllReduce) commonly used
in distributed training. First, we generalize addition to neural
networks by defining the operation AbelianAdd ().

Definition 1. W: In neural networks, the output of each
layer is multiplied by the scale, added, and broadcast to the
input of the next layer.

This operation applies to current neural networks because
they are composed of layers with parameters and outputs,
and AbelianAdd builds an Abelian group. We denote re-
peated application of & as Zg,i:O' Let M denote the set

—_~—

of all isomorphic low-bit base models model; ;, sharing the
same architecture but differing in quantized parameters. For
any VYmq, ms € M, we define:

Model(W1 + Wy, A1 + As), (6)

where W1, W5 and Aq, As are the corresponding weights
and activations of my and ms. Then, the set (M, W) forms
an Abelian group.

Furthermore, since each parameter in layer j can be writ-
ten as W =

W (and similarly for activations), we can introduce a com-
plementary operation based on scaling—termed Abelian-
Mul—to handle these multiplicative factors explicitly. Next,
we define the AbelianMul (%) as following:

my1 W mo =

scale; x W with an integer-valued matrix

Definition 2. For a scaling vector U = (uq,us, ..., ug),
Usmodel = model(u; x Wi, ug X Wa, ..., up, X W).

In the low-bit expansion of the model, the vector U corre-
sponds to the scale factors. The operations (W, %) equip M

with an Abelian group structure, enabling efficient construc-
tion of basis models without altering the model architecture.
Model Low-Bit Expansion. For multi-layer networks,
the basis functions h; in Eq. 1 are instantiated through the
operations AbelianAdd and AbelianMul, which enable the
expansion to bypass the curse of dimensionality. Because
the weights and activations in each layer can be expressed
as integer multiples of their corresponding scaling factors,
the resulting low-order expansion of any deep model natu-
rally conforms to Theorem 2.
Theorem 2. For any locally continuous deep learning
model model, whose core computation kernel is matrix mul-
tiplication (or can be equivalently expressed as multiplica-
tion), with weights W and activations A, we obtain the fol-
lowing expansion:

model = > model;
W,i,jE€[—1,n]
— @)
= Z scale; j¥model; ;,
W,2,j€[—1,n]

where m(;deli,j denotes the scaled version of the low-bit

model, and model; ; denotes the model with integer param-
eters for each layer.

Proof. Based on the Eq. 6, it follows that

Z m(;deli,j = Z

Model(W;, A, sample)

W,5,j€[—1,n] W,i,j€[—1,n]
:Model( Z W, Z Aj,sample)
i€[—1,n] jE[—1,n]
(8)
By Theorem 1, the partial sums > .., W, and

> jel=1,n] A ; converge exponentially to W and A, respec-
tively. Consequently, by local continuity of the model, we
obtain model =}, ; ic(_1,, Mmodel; ;.

Based on Theorem 2, the inference process can be ex-
panded into the pattern shown in Figure 3. In this pattern,

all model are low computation resource models whose main
computation kernel is low-bit integer or sparse. Each layer
computes the quantized activation and tensor multiplication
independently, which is shown in the following section, and

—_~—

all reduce the output of each model.

The Complexity of Series Expansion

While Theorem 2 establishes the equivalence of the expan-
sion to the original model, the resulting formulation also en-
ables further reductions in computational complexity when
considering parallel execution and model performance.

The Weight Expansion Upper Bound. When both W
and A are expanded into ¢ terms, naive expansion requires
2 low-bit matrix multiplications (Figure 2). However, for
a well-trained model with loss /¢, the approximate effect of
quantization error on weights can be linearized:

L(model(W)) — £(model(W + error)) = % ~error  (9)



Method | Bits (W/A) | ResNet-18  ResNet-34

ResNet-50

ResNet-101  RegNetX-600MF  Inception-V3

Full-precision | 7101 73.30

76.63 77.30 73.52 77.40

4-bit Weights / 4-bit Activations

ACIQ 12019 4/4 67.00 69.10 73.80 - - 60.40
AdaQuant 20201 4/4 67.40 70.30 73.70 74.40 68.20 72.60
PD-Quant (2023 4/4 69.30 - 75.09 - 70.95 -
Pack-PTQ 120251 4/4 68.74 - 74.74 - 70.96 -

Series_Ex (ours) 4/4 70.37 72.75 77.03 76.60 71.80 76.09
2-bit Weights / 4-bit Activations

LAPQ 2019 2/4 0.18 0.14 0.17 - 0.12 -
CL-Calib [2024) 2/4 65.14 - 70.92 - 64.50 -
Pack-PTQ 202s) 2/4 61.29 - 63.47 - 59.88 -

Series_Ex (ours) 2/4 70.26 71.95 74.23 75.10 70.04 74.27
2-bit Weights / 2-bit Activations

ACIQ p019] 2/2 0.12 0.20 0.11 0.21 - 0.11
AdaQuant 12020) 2/2 0.11 - 0.12 0.14 - 0.13

BRECQ [2021] 2/2 42.54 - 29.01 - 3.62 -
PD-Quant (2023 2/2 53.08 - 56.98 - 55.13 -
CL-Calib 20241 2/2 54.45 - 58.30 - 56.39 -

Series_Ex (ours) 2/2 59.14 63.58 62.13 61.64 59.60 49.87

Table 1: Comparison of post-training quantization methods under different bit-width basis settings. Results are averaged over
multiple rounds. Our results have significant advantages in extremely low-bit quantization.

As the gradient 9¢/OW approaches zero after convergence,
the loss becomes insensitive to small perturbations in W.
Ablations confirm that expanding W beyond 2-3 terms
yields negligible accuracy gains. Therefore, only activations
require multiple terms, reducing the complexity from O(#?)
to O(t), i.e., model = Zle 2221 scale; j&model; j,k <
t, instead of a full £2 combination.

The Computation Complexity of M, ,, Multiplication.
Note that the M,,,,, is the tensor whose all elements are one,
implying that it is a rank-one matrix. Specifically, M, =
117, where 1 = (1,1,...,1) is an all-ones vector. So, for
many matrix multiplication M M, = M171 = (M17)1.
The computation complexity of the latter process is O(n?).

The Parallelization of Computing M. In the proof
of Theorem 1, the series expansion algorithm first uses a
non-saturated quantization process to produce M. During
the computation of M;,¢ > 1, the maximum element in
the corresponding R; is set to scale;_1. This hierarchical
scaling, scale; = 2X5calei+1, allows each term in the
expansion to be computed independently, enabling paral-
lel execution. Furthermore, based on the general form of
non-saturating symmetric quantization, it can be deduced
that the (4,7) element in M}, is computed as M (i,j) =
INTX(M(i,j)/scaley,) —2X INTX (M (i, 7)/scaley_1).
By introducing M,,, and My, other quantization schemes
can be transformed into the non-saturating symmetric form.

Experiments

Experiment Details

We conduct series expansion quantization experiments on
various models on Imagenet (Deng et al. 2009) and NLP

tasks (Rajpurkar et al. 2016; Williams, Nangia, and Bow-
man 2017), including ResNet (He et al. 2016), RegNet (Ra-
dosavovic et al. 2020), etc. We assess the performance of
large language models (LLMs) on the MMLU (Hendrycks
et al. 2020) benchmark to evaluate the scalability and gen-
erality of our method. Our method sets hyperparameters
consistently on all models and quantizes channel by chan-
nel. The basis function selects the class of integer quanti-
zation functions. We determine the value of clip*/~ during
saturation quantization to minimize the impact of Mg,. In
non-saturated quantization, we use the expected quantiza-
tion noise in the Laplace distribution as the clipping func-
tion. We quantify weights and activations separately. Then
the activations of all base models are broadcast and quan-
tized. For all PTQ experiments, we set the first and last layer
quantization to 8-bits. Our code is based on pytorch. The
code will be made public. All experiments are conducted on
a single NVIDIA A800 GPU.

Comparison to State-of-the-arts

CNN (ImageNet). We compare our method with state-of-
the-art PTQ algorithms (Banner et al. 2018; Cai et al. 2020;
Li et al. 2021; Nahshan et al. 2021; Wei et al. 2022; Liu
et al. 2023a; Shang et al. 2024; Li et al. 2025; Zhao et al.
2025) under various low-bit basis function settings. Our
method consistently improves performance for each low-
bit basis function configuration. As shown in Table 1, at
W4A4 our approach matches full-precision accuracy, and
even surpasses it on ResNet-50, demonstrating that the
integer-valued basis functions can effectively approximate
floating-point computations. In the more challenging W2A2
setting—ultra low-bit regime where most PTQ methods col-
lapse—our method remains stable, achieving over 60% ac-



Models Method Bits (W/A) Accuracy Model Size Training Data Runtime FT Calibration
DSQ 4/4 69.56 5.81M 1.2M 100h w/ -
QDrop 4/4 69.17 5.81M 0 0.43h w/ 1024
?Fe;_lj‘ft(')lg PD-Quant 4/4 69.3 581M 0 1.11h w/ 1024
S Series_Ex(ours) 4/4 70.37 5.81M* 0 0.3%h wlo 0
Series_Ex(ours)  2/Mix(2/4/8) 69.01 3.01M* 0 2.5h wlo 0
. DSQ 4/4 64.8 2.26M 1.2M 192h wl -
“{‘;‘;};ZNZ;‘;Z Series_Ex(ours) 4/4 711 2.26M* 0 1.94h wlo 0
e Series_Ex(ours)  2/Mix(2/4/8) 65.21 1.18M* 0 5.5h wlo 0

Table 2: Comparison of our algorithm with different quantization methods and accuracy time comparison using mixed precision
quantization. Our algorithm does not require fine-tuning (FT) and calibration sets.

curacy even on deep architectures.

Model ResNet-18
Bits W3A3 W2A4 W4A2 WBA8 W32A32
AdaQuant 60.09  0.11 - - 71.01
QDrop 65.56 64.66 57.56 - 71.06
Series_Ex(ours) | 68.8 70.26 60.57 71.00 71.01
Quant-Time 5.334s  3.236s 4.456s 0.063s -

Table 3: The performance and time of weights and activa-
tions under different low-bit basis functions.

Table 2 compares our series expansion to PTQ and
QAT (Gong et al. 2019) without parallelism. Our approach
consistently achieves higher accuracy without the need for
calibration data or fine-tuning. For instance, on ResNet-18,
the model is decomposed into three 4-bit basis models, with
activations expanded at inference as per Eq. 7. This ex-
pansion reduces storage to just 37.5% of the full-precision
model. Even with the extra activation expansion, inference
remains faster than real-time quantization methods, as ac-
tivation quantization parameters are computed once. Table
3 further shows that our framework flexibly adapts to dif-
ferent bit-widths basis. Specifically, INT8 basis functions
match FP accuracy, while INT4 and even INT?2 deliver up to
40-60% speedup with minimal degradation. These results
confirm the series expansion framework enables practical,
accurate ultra-low-bit inference including 2-bit.

Method SQuAD1.1(F1) MNLI(Acc mm)
Full Prec. 88.42 84.57
AdaQuant 5.17 -

BRECQ 68.58 31.91

QDrop 75.97 69.19
Series_Ex(ours) 79.30 72.31

Table 4: Performance on NLP tasks compared with existing
methods on W4A4 basis.

Transformers (SQuAD and MNLI). Table 4 demon-
strates the effectiveness of our series expansion algorithm
beyond vision, applied to NLP tasks with BERT. Compared
to existing methods, our algorithm does not require addi-
tional data, whereas the QDROP method necessitates extra

Method ‘ MMLU

‘ Hums. STEM  Social Other Avg.
LLaMA3-8B 59.0 55.3 76.0 71.5 64.8
Normal 56.8 52.9 73.6 69.4 62.5
GPTQ 533 57.7 74.2 69.0 63.0
QLoRA 493 50.3 65.8 64.2 56.7
Series_Ex(ours) 58.9 55.6 76.1 71.3 64.7
LLaMA2-7B 43.1 36.4 51.6 52.3 45.7
GPTQ 41.3 34.8 48.7 50.6 43.8
LLM-QAT - - - - 427
Series_Ex(ours) 42.8 36.8 51.9 52.3 45.7
Qwen2.5-3B 56.6 61.5 76.8 70.3 65.3
Series_Ex(ours) 56.6 61.4 76.8 70.3 65.2

Table 5: Performance comparison of different 4-bit quanti-
zation methods on MMLU across various model sizes.

Int2 Latency(s) IPS Speedup Memory(MB) Savings Acc. Ratio
Orgin. 1.071 9337 0% 97.80 0% 7101 0
GPTQ 0.557 181.13 +94% 9.80 -89%  Fail X

BRECQ 0.601 166.20 +78% 8.80 91% 42.54 |28.47

Series_Ex(ours) 0.560 178.57 +92% 15.60 -84% 59.14 |11.87

Table 6: Comparison with the PTQ method at 2 bit-width in
ResNet-50. IPS represents (image per second).

data examples. The series expansion algorithm outperforms
existing methods and achieves significant performance im-
provements. This highlights the versatility and strong gener-
alizability of our approach.

Large Language Models (MMLU). As shown in Table
5, although our work primarily focuses on small models for
specific tasks, we still explore its application in LLMs (Tou-
vron et al. 2023; Yang et al. 2024). Following the quantiza-
tion settings of W4A16, our approach remains effective in
LLMs. On MMLU, our method achieves accuracy nearly
equivalent to the original model and significantly outper-
forms existing method (Frantar et al. 2023; Dettmers et al.
2023; Liu et al. 2023b) while maintaining comparable per-
formance, demonstrating the efficiency and superiority of
series expansion.

Practical Deployment at Extreme Bit-widths Basis. To
demonstrate the practical viability of our approach, we com-



Model ResNet-18 ResNet-50 LLaMA2-7B
Bit Int 2 Int4 Int 2 Int4 Int4
Num_Expansion 2W 3A 2W 2A 2W 4A 2W 4A 2W 0A
Memory (MB) 12.4 (146%) 23.2(-) 29.8 (141.8%) 51.2(-) 7427.2 (-)
Latency (ms) 0.2 (150%) 0.29 (127.5%) 0.55 (148.1%) 0.74 (130%) 12.7 (131.7%)
BOPS (G) 22(180.7%) 76 (133%) 37 (185.1%) 144 (141.7%) 1876 (196.2%)

Table 7: Computational efficiency and the number of expansion terms under different bit-widths. Num_Expansion: aWbA for a
weight and b activation expansions counts. BOPS: Bit Operations. Blue numbers indicate gains over the 8-bit basis model.

pare it against existing PTQ baselines under an aggressive 2-
bit quantization setup (Table 6). While prior methods such as
GPTQ and BRECQ achieve substantial speedup and mem-
ory savings, they either completely fail or suffer significant
accuracy degradation, rendering them unsuitable for real-
world use. In contrast, our method delivers comparable de-
ployment efficiency—achieving over 90% speedup and 84%
memory reduction—while maintaining a notably higher ac-
curacy (59.14%), underscoring its robustness and usability
in real-time, resource-constrained applications.

Ablation

Ablation of W,,, W,,,. Figure 4a shows the effect of sat-
uration (W, ) and asymmetric (W, ) basis functions. Dis-
abling clipping (W, = 0) barely affects accuracy after se-
ries expansion on ResNet-50 and ResNet-18, and introduc-
ing asymmetric quantization (bias x W, 7# 0) yields re-
sults almost identical to full precision. These parameters are
data-dependent and can be precomputed, confirming that our
framework is compatible with various quantization schemes.

Ablation of the Expansion. As illustrated in Figure
4b, increasing the number of expansion terms gradually
narrows the activation gap between the quantized and
full-precision ResNet-50 models, leading to improved accu-
racy that quickly saturates. Four expansion terms are suf-
ficient to match full-precision performance; beyond five,
the residual error continues to shrink but yields negligi-
ble accuracy gains while incurring significant computational
overhead. In practice, we stop expansion once the maxi-
mum activation discrepancy drops below 10~%. For large
Transformer-based models, we find that 2-3 weight expan-
sions and at most 03 activation expansions are usually suf-
ficient. Since weight quantization errors are much smaller,
weights are typically expanded no more than twice, while
activations dominate the expansion. This observation is con-
sistent with our theoretical analysis.

Discussion

Series Expansion # Naive Ensemble. Our method dif-
fers fundamentally from naively combining multiple INT
models. Unlike simple linear ensembles of multiple INT
models, which merely average predictions and cannot re-
construct the original model, our approach is grounded in
a structured series expansion. This expansion decomposes
the full-precision model into a sequence of low-bit basis
components with theoretical guarantees. Existing ensemble
strategies applied to INT models bring no accuracy gain and
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Figure 4: The left sub-figure(a) shows our experiments
on saturation and asymmetric quantization. The right sub-
figure(b) shows the changes in loss and accuracy as the num-
ber of expansions increases.

sometimes even reduce performance, highlighting the neces-
sity of our expansion framework.

Efficiency and Limitations. For activations, quantization
parameters are computed online only once, and subsequent
expansion terms reuse these parameters offline, eliminating
repeated calibration. The weights are stored as low-bit in-
tegers, and activations are discarded immediately after use.
Although multiple lightweight basis models are stored, their
small size and limited number keep total memory well be-
low full precision. This basis expansion approach enables
efficient and accurate ultra-low-bit (e.g., INT2) deployment.

Table 7 reports the efficiency of our series-expansion
framework under different bit configurations, including
memory usage, latency, and bit-operation counts. For a fair
comparison, all latencies were measured on same hard-
ware (batch size=1, 100 tokens). Relative to practical 8-bit
deployment, inference efficiency is significantly improved.
When quantized to 4 bits, memory footprint are similar to
those of the 8-bit model, yet both latency and compute de-
mand are clearly reduced. At the more aggressive 2-bit set-
ting, expansion allows accuracy to be preserved while nearly
halving latency and cutting BOPS by 80-96%.

Conclusion

This paper proposes a deep model series expansion frame-
work that replaces the computationally intensive original
model with multiple efficient basis function models. We ap-
ply this framework to PTQ, expanding the full-precision
model into an integer-based version and prove its conver-
gence. Theoretical and experimental results show that the
algorithm improves the parallel capability of the model and
guarantees the performance of the low-bit model without the
need for calibration sets and fine-tuning.
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