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A B S T R A C T

The 5G technology is expected to revolutionize various applications with stringent latency and throughput
requirements, such as augmented reality and cloud gaming. Despite the rapid 5G deployment, it is still a
puzzle whether current commercial 5G networks can meet the strict requirements and deliver the expected
quality of experience (QoE) of these applications. Especially in mobile scenarios, as user mobility (e.g.,
walking and driving) plays a critical role in both network performance and application QoE, it becomes
more challenging to provide high performance stably and continuously. To solve this puzzle, in this paper,
we present a comprehensive cross-layer measurement study of current commercial 5G networks under five
mobility scenarios typically seen in our daily lives. Specifically, under these mobility scenarios, we cover
(1) the impact of physical layer metrics on network performance, (2) general network performance at the
network layer, (3) comparison of four congestion control algorithms at the transport layer, and (4) application
QoE at the application layer. Our measurement results show that the achievable network performance and
application QoE under current commercial 5G networks falls behind expectations. We further reveal some
insights that could be leveraged to improve the QoE of these applications under mobility scenarios.
1. Introduction

With the evolution of mobile communication technology, the 5th
generation (5G) mobile networks are emerging to connect everything
from personal devices to industrial machines. The global 5G con-
nections have reached 540 million by 2021, which doubles that in
2020 [1], showing the rapid deployment of 5G. In Germany, half
of the territory has been covered by 5G by 2021 [2]. The promised
properties of 5G, including low latency, high throughput, and high
reliability, are expected to facilitate various modern applications [3]
such as augmented reality (AR) [4] and cloud gaming [5]. These appli-
cations typically require extremely high network performance which
the current 4G/LTE technology falls short of.

To support these typical applications, 5G is supposed to provide
high network performance with stability and continuity. Stability refers
to the ability to maintain consistent performance temporally (e.g., steady
throughput, low jitter). This is critical to real-time applications like
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cloud gaming where instantaneous high delay can cause unexpected
gaming actions that have a long-term effect on the game, leading to
poor user experience. Continuity refers to the ability to avoid service
disruption spatially (e.g., due to blockage or connection handovers).
This is important for immersive applications like AR where connection
hiccups can cause uncomfortable feelings like dizziness. Delivering
stability and continuity besides high performance in 5G is fundamental
to enabling these applications with high QoE, while 5G is more suscep-
tible (than 4G/LTE) to blockage and attenuation by nature and suffers
more frequent handovers due to the smaller coverage range of 5G base
stations.

Recently, there have been several measurement studies on the per-
formance of both mmWave 5G networks [6–10] and sub-6 GHz 5G net-
works [11–13]. However, these measurement studies are conducted ei-
ther in stationary scenarios or in limited mobility scenarios (e.g., walk-
ing or driving), without covering the 5G network performance and
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 data mining, AI training, and similar technologies. 
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Table 1
Measurement dataset statistics.

Dataset Statistics

Time span 10 months
Total travel distance 2808 km+
Total data usage 1153.6 GB
# of mobility scenarios 5
# of congestion control algorithms 4
# of applications 3

the QoE of typical 5G applications under diverse mobility scenarios
A more detailed comparison is provided in Section 2). Therefore, it
emains a puzzle whether the current 5G networks can consistently

provide high performance and meet the requirements of typical 5G
applications under diverse mobility scenarios.

This paper fills this gap by presenting a comprehensive cross-layer
measurement study of the current commercial 5G networks under
various mobility scenarios. Our measurement study spanned 10 months
and consumed 1153.6 GB traffic data, and the total travel distance of
the measurement exceeds 2808 km, as shown in Table 1. Our focus is
on the impact of the user mobility pattern on the network performance,
stability, and continuity at different layers of the protocol stack. To
capture user mobility, we define four metrics namely real-time moving
peed, speed variation, connectivity density, and varying ambient en-
ironment along user movement. Based on these metrics, we consider

five types of mobility patterns: walking, biking, riding a bus, riding a
tram, and driving (or riding in a car). Under these mobility patterns, we
(1) study the impact of physical layer metrics and mobility factors on
network performance, including signal strength, obstruction, distance
from the base station, and moving velocity, (2) investigate the general
performance at the network layer, including round-trip time (RTT), up-
/down-link throughput, and packet loss rate (PLR), (3) study the impact
of transport protocols on network performance, where we compare four
popular congestion control algorithms (CCA) at the transport layer, and
(4) evaluate the QoE of three typical 5G applications at the application
layer.

Based on our measurement results, we present three insights that
ould help both application developers and mobile service providers
mprove the QoE of these applications in the future: (1) Optimal
oute planning should consider not only real-time road traffic but
lso network conditions along the path when users are enjoying 5G
pplications. For example, a path with better network performance
ut with higher road traffic may be preferred by people streaming
ideos or playing cloud games if the road traffic is within an acceptable
ange. (2) In addition to real-time network performance, applications
an leverage user mobility traces to predict network performance and
urther adapt to network variations in advance. (3) Considering the
emaining high transmission latency of the backbone network, it is
ecessary to choose a suitable nearby edge server to provide services
ased on users’ location for a lower overall end-to-end latency.

In summary, this paper makes the following contributions:

• We identify two additional challenges imposed by typical applica-
tions and user mobility for 5G. To meet the application QoE, 5G
networks should provide temporal stability and spatial continuity
besides high network performance.

• We define four key metrics to capture mobility and conduct exten-
sive measurements to reveal their varying impacts on the general
network performance. Based on these metrics, we consider five
types of mobility patterns.

• We perform the first comprehensive cross-layer measurement
study of 5G networks under diverse mobility patterns. Our cross-
layer 5G measurements include 5G performance at the network
layer, transport layer (four CCAs), and application layer (three
typical 5G applications).
2 
• Based on the measurement results, we reveal three insights on im-
proving the application QoE, including network-aware route plan-
ning, handover-aware application adaptation, and mobility-aware
edge resource adaptation.

The rest of the paper is organized as follows. In Section 3, we
briefly introduce the emerging 5G technology as well as typical ap-
plications and outdoor mobility patterns for 5G. Next, we present our
measurement methodology in Section 4. Then, we evaluate the basic 5G
etwork performance (e.g., RTT, throughput, and PLR) and application
erformance indicated by QoE under different mobilities, in Sections 5

and 6, respectively. After that, we discuss some recent works related
to 5G mobile network measurements and cellular network measure-
ments under mobility in Section 2. Finally, we reveal three insights for
improving QoE in Section 7 and conclude the paper in Section 9.

2. Related work

5G network performance under mobility. Narayanan et al. con-
ducted the first measurement study of a commercial mmWave 5G
etwork in [6], but they only present two throughput traces during

walking and driving respectively. Lumos5G [9] identified key UE-side
mobility factors that affect 5G performance and then utilized these
factors to predict mmWave 5G throughput. Hassan et al. carried out a
ystematic analysis to uncover the handover mechanisms employed by
G carriers [8]. In summary, these studies mainly focus on mmWave

5G, which is quite distinct from the sub-6 GHz 5G that we measure
due to the extremely high frequency of mmWave. Xu et al. conducted
measurements to characterize TCP performance in sub-6 Ghz NSA 5G
under low mobility (walking/bicycling) [11]. In contrast, we measure
the network performance of both NSA and SA 5G with four congestion
control algorithms under five mobility patterns. Also, we explore the
respective impacts of various mobility factors on network performance.
Ghoshal et al. performed a comprehensive measurement study under
driving scenario [14], while we focus on the impact of diverse mobility
patterns and mobility factors on network performance. Pan et al. con-
ducted the first measurement study on a high-speed railway to reveal
5G performance in extreme mobility (∼300 km/h), while we focus on
mobility patterns below 100 km/h.

5G application performance under mobility. Narayanan et al.
explored the impact of mmWave 5G on mobile application QoE [7]
for traditional applications such as web browsing and video streaming.
pecifically, they collected throughput traces during walking/driving
nd used trace-driven emulation to investigate the QoE of adaptive
ideo streaming, which only considers throughput regardless of la-
ency and packet loss. In contrast, we measure the QoE of adaptive
ideo streaming over commercial sub-6 GHz 5G networks in complex
eal-world deployments under diverse mobility patterns. Moreover, we
xplore the QoE of typical 5G applications like cloud-based AR and
loud gaming under various mobility patterns. Hassan et al. studied the
mpact of handover mechanisms on application QoE [8], while Ghoshal

et al. performed a measurement study on 5G applications under driving
scenario [14]. In contrast, we focus on the impact of diverse mobility
patterns and factors on the QoE of different applications. Ghoshal et al.
also studied AR QoE in mmWave 5G during walking and driving [15],
while we study AR QoE in sub-6 GHz 5G under five mobility scenarios.
Khan et al. focus on the delay of 1080p live video streaming on moving
vehicles [16], while we study the QoE of 8K on-demand adaptive
bitrate streaming under various mobility patterns.

We believe our measurement study can fill the gap of both network
erformance and application QoE in sub-6 GHz 5G network under
arious mobility scenarios and varying mobility factors.

3. Background

This section introduces the 5G technology and its current deploy-
ments, typical 5G applications, and typical mobility patterns.
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Fig. 1. Typical 5G application use cases.

3.1. 5G technology

The 5G technology promises to deliver high bandwidth, ultra-low
latency, ultra-high reliability, and massive device connectivity [17]. In
view of these outstanding advantages, 5G has been widely deployed all
around the world lately. According to VIAVI’s report, commercial 5G
networks have been available in 1,947 cities at the beginning of 2022,
an increase of about 50% from a year ago [18].

5G outperforms 4G by using higher frequency bands and leveraging
emerging technologies such as massive multiple-input multiple-output
(MIMO) [19]. Compared to 2 GHz used by 4G/LTE, there are two
widely-used 5G frequency bands, i.e., sub-6 GHz and mmWave. Most
countries deploy sub-6 GHz 5G at the beginning in large part due to
its much higher coverage range than mmWave, while the US mainly
focuses on mmWave [20]. Considering the capital expenditures and
deployment cycles, early deployment of commercial 5G networks is
non-standalone (NSA), which means 5G networks are still built atop
existing 4G infrastructure, making 5G unable to give full play to its
advantages. Under the NSA architecture, 5G is only utilized for the data
plane, with the help of 4G for control plane operations [21]. In contrast,
the standalone (SA) architecture is fully independent of the 4G infras-
tructure with potentially better performance [22]. Recently, operators
are increasingly deploying and testing 5G SA networks. For example,
the three biggest telecoms in China, namely China Mobile, China
Telecom, and China Unicom, have all launched 5G SA networks [23].

Although 5G has developed rapidly recently, it is still a puzzle
whether the actual perceived performance of current commercial 5G
networks can consistently meet the requirements of typical 5G applica-
tions under different mobility patterns as we have expected.

3.2. Typical 5G applications

Now, we introduce typical 5G Applications evolving with 5G net-
works. Fig. 1 shows three sets of typical 5G use cases [24]. Specifically,
enhanced mobile broadband (eMBB) is for high-bandwidth scenarios,
supporting applications like AR, virtual reality (VR), cloud gaming, and
4K video streaming. Massive machine type communication (mMTC)
provides connections to large numbers of devices, supporting applica-
tions like smart cities and smart factories. Ultra reliable low latency
communication (uRLLC) aims to achieve ultra-low latency, support-
ing mission-critical applications like remote surgery and autonomous
driving. We select the following three applications as representative
examples.

Cloud gaming. As an emerging online gaming paradigm, cloud
gaming collects user control actions from user devices (i.e., clients)
to a cloud server in a timely manner, renders each frame sequentially
on the server instead of the clients, and streams the encoded frames
back to the clients via the network. Such a real-time streaming system
3 
needs sufficient bandwidth (especially for 4K/8K game streaming) as
well as ultra-low latency to ensure timely control actions and a good
experience for game players.

Cloud-based AR. Nowadays, most existing AR devices still lack the
ability to detect and recognize complex objects in the real world [25].
It is prohibitive to execute large complex deep neural networks on AR
devices due to the big mismatch between the excessive computations
needed and the limited processing power and battery life of the AR
device. To address this issue, cloud-based AR systems offload object
detection tasks from AR devices to a cloud server [26]. However, guar-
anteeing low end-to-end latency without sacrificing detection accuracy
is still a challenging problem due to the network overhead. 5G is
expected to address this challenge by reducing the network latency
significantly.

Video streaming. Video streaming is one of the most popular
applications on user devices. With 5G’s high bandwidth, users are able
to watch 4K and even 8K streaming videos. Moreover, adaptive bitrate
(ABR) algorithms are widely used to improve the QoE of video stream-
ing applications. However, the performance of the ABR algorithm may
be sabotaged by the high variation of 5G’s throughput, especially in
non-stationary scenarios.

The QoE of 5G applications depends on multiple factors including
the 5G access network quality, backbone network quality, server perfor-
mance, and device performance. According to our initial measurement
results, the 5G networks (i.e., the access networks and backbone net-
work) still contribute to a significant portion of the end-to-end latency
of applications in most cases. Therefore, it is urgent to conduct a
comprehensive measurement study to examine the application QoE
under current 5G networks.

3.3. Outdoor mobility patterns

5G users may use applications in various scenarios (e.g., indoor/
outdoor, static/mobile). Since 5G owns much higher frequency bands
that are more sensitive to the environment, outdoor mobility could
induce severe network performance degradation. Common mobility
patterns of 5G users include walking, biking, riding a bus or a tram
(light rail), and driving (or riding in a car).

These mobility patterns have different characteristics, which can
mainly be captured by the following metrics: average moving speed,
moving speed variation, connectivity density, and environment. These
metrics play a key role in network performance. Firstly, the moving
speed and its variation influence the network performance with respect
to bit error rate (due to the fast signal fading) and handover fre-
quency [27]. Handovers happen when a user moves away from the area
covered by one base station (BS) and enters the area covered by another
one, causing network connection hiccups. Secondly, high connectivity
density may limit the maximum available bandwidth since users have
to share the bandwidth with others while being connected to the same
BS. Thirdly, the environment includes the surroundings (e.g., buildings,
tunnels, trees, vehicle body shells), the distance between the user
equipment (UE) and the BS, etc., which impact network performance
by causing signal obstruction and attenuation. We will investigate such
impacts in detail in Section 5.1.

For different mobility patterns, the typical values of these metrics
vary as listed in Table 2. We use the GeoLife [28–30] and DR-Train [31]
datasets to estimate the average moving speed and its variation un-
der different mobility patterns by calculating the mean and standard
deviation of moving speed. Additionally, buses and cars have a body
shell of medium thickness, while trams usually have a thicker shell.
Moreover, public transports usually have a high connectivity density,
and in our city, there are more people taking the bus than the tram. The
differences in these metrics under different mobility patterns lead to
diverse effects on 5G network performance. For instance, a thicker body
shell may present more obstacles to 5G signals, leading to potential
signal loss or degradation. Also, higher moving speed may cause more
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Table 2
Typical outdoor mobility patterns.

Mobility pattern Speed (km/h) Speed variation Body shell Connectivity density

Walking 4 2.6 none low
Biking 23 11.1 none low
Bus 20 17.6 medium high
Tram 24 17.7 thick moderate
Driving 36 29.7 medium low
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frequent handover. In short, the above metrics can impact network
performance in different ways while users are moving.

In a nutshell, different mobility patterns have varying impacts on
etwork performance and thus application QoE. In addition to pro-
iding high performance, it is critical for 5G networks to maintain

both temporal stability and spatial continuity in the presence of mo-
ility. The questions of whether 5G networks can already satisfy the
equirements of typical applications under different mobility patterns,
nd how far we are from the expectation motivate us to perform
he comprehensive measurement study on cross-layer performances of
ommercial 5G networks under five mobility patterns.

4. Measurement methodology

We now describe our measurement methodology and tools.
5G networks. Our measurement study is conducted in a densely

populated city over the 5G networks of two large mobile service
providers, denoted by 𝑃𝑀 and 𝑃𝑈 respectively.1 Specifically, 𝑃𝑀 offers
G networks with the 4.8 GHz radio while 𝑃𝑈 uses the 3.5 GHz radio.
he mmWave 5G networks have not been deployed in the country,
nd hence our study only focuses on sub-6 GHz 5G networks. For the
eployment architecture, 𝑃𝑀 deploys 5G in NSA architecture while
𝑈 in SA architecture. To know if any 5G is ready to support typical
pplications, we choose the more advanced provider 𝑃𝑈 for the studies
n application QoE because of its generally lower network latency
nd higher network throughput (Section 5.2). Additionally, for 4G
etworks, 𝑃𝑀 offers the 1.9 GHz radio while 𝑃𝑈 uses the 1.8 GHz radio.
User equipment (UE). We conduct measurements with a Redmi

K30 Pro smartphone, a mid-end smartphone equipped with an octa-core
CPU, 6 GB DRAM, and a Qualcomm Snapdragon 865 System-on-Chip
(SoC). The SoC uses a separate 5G modem (i.e., X55 modem) to provide
higher throughput, yet at the expense of more power consumption.
The X55 modem supports both sub-6 GHz and mmWave frequency
bands, and both NA and NSA modes. Before large-scale measurements
in the wild, we conducted an initial measurement experiment to study
whether different phone models would significantly affect network
performance. Specifically, we compared the performance of Redmi K30
ro with the other three phone models, i.e., Huawei Mate 30 Pro (Kirin
90 chip with Balong 5000 5G Modem), iPhone 13 (A15 chip with
ualcomm X60 5G modem), and Meizu 20 Infinity (Snapdragon 8 Gen

2 chip with Qualcomm X70 modem) using Speedtest [32]. The results
indicate that the first two phone models present similar performance
to that of Redmi K30 Pro, with a difference of within 5%. Additionally,
Meizu 20 Infinity shows similar latency as well and a 9.6% higher
average throughput. In view of their comparable performance, we
choose Redmi K30 Pro for further measurements due to its convenient
root privilege access and client deployment. For comparison between
4G and 5G networks, we conduct measurements with two smartphones
of the same model (i.e., Redmi K30 Pro) simultaneously, one with 5G
service enabled while the other with 4G service only.

Server selection. We rent the nearest available server (with 4 vC-
PUs, 8 GB DRAM, and 1Gbps bandwidth) from a major cloud provider
to serve as the backend for our measurements, which is 16 hops away
from our clients. The RTT for wired connections to the server is around

1 The names of the providers are not given for anonymization.
 m

4 
22 ms. By comparative experiments, we ensure that the cloud server
used for our measurements is not the bandwidth bottleneck of an
nd-to-end path. Specifically, we first utilize Speedtest to measure the

maximum achievable 5G throughput with their local edge server. The
Speedtest results show that the throughput is comparable to what we
measure with our server, which is far below 1Gbps. Therefore, we can
confirm the cloud server is not the bottleneck. Compared to the servers
provided by Speedtest, our cloud server can report diverse network
performance metrics and capture packets so that we can perform a
more detailed analysis. Furthermore, it is convenient to achieve fine-
grained control of network measurement parameters by changing the
server settings such as the congestion control algorithms adopted by the
OS kernel. Note that for deploying cloud gaming and cloud-based AR
applications, we also rent a GPU server with 8 vCPUs, 32 GB DRAM,
and an NVIDIA T4 GPU with 16 GB memory at the same location from
the same cloud provider, to ensure sufficient capability of graphics
processing and parallel computing.

Measurement tools. We use iperf3 [33] to measure the network
throughput and save the result log reported by iperf on both the
lient (i.e., the smartphone) and server, including the total transferred

bytes, throughput, number of retransmitted packets, and congestion
window size. The RTT is measured by the ping tool. Noting that the
ing tool is only used for measuring general 4G/5G latency at the

network layer, which follows other state-of-the-art 5G measurement
works [6,8,14]. We do not use the ping tool to measure the RTT of
applications. Instead, we follow state-of-the-art measurement works
on application QoE and use application-specific metrics to measure
application latency perceived by users, e.g., response delay for cloud
gaming. We use the tcpdump tool [34] to capture packets on both
sides of the client and server for low-level root cause analysis.

Application deployment. To be able to collect server logs and
ontrol application settings for comparative experiments, we leverage
ustom-built tools to examine the QoE of the three typical 5G appli-
ations introduced in Section 3.2: (1) The cloud gaming application

is developed with a popular open-source cloud gaming framework
amingAnywhere [35], which utilizes the real-time streaming protocol

RTSP) to stream the encoded frames from the server to the client.
e build an Android application to simulate periodic touches on the

martphone screen, which is running in the background when cloud
aming is presented in the foreground. To obtain the QoE metric of
loud gaming, i.e., response delay, we also develop a script to record
he screen and analyze each frame extracted from the recorded screen
ideo with FFmpeg [36] and OpenCV [37]. (2) For cloud-based AR,

we develop a server program and an Android client application by
urselves. The client continuously sends frames to the server at a rate
f 10 FPS, and the server processes the frame with the YOLO object
etection model [38]. We obtain the QoE metrics of AR based on the
nterval between starting sending a frame and receiving the detection
esult. (3) For 8K video streaming, we build a web server with the open
ource DASH.js framework [39]. We obtain the QoE metrics under

different adaptive bitrate (ABR) algorithms directly from the log file
vailable from the framework.
Measurement under mobility. For a fair comparison of different

obility patterns, all measurement experiments are conducted on the
ame road (three BSs along the straight road) with a smartphone
n hand, to ensure the same network environment across different

obility patterns. It is worth noting that finding such a road for all
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mobility patterns with 5G coverage is non-trivial, due to distinct fixed
routes served by trams and buses, while other mobility patterns are
more flexible. Therefore, we carefully identify a shared route of trams
and buses that is as long as possible (about 2 km, compared to a
0.5 km × 0.92 km area in [11]), and then conduct the comparative
measurement study on this route for all mobility patterns.

For all mobility patterns, we move back and forth to repeat the
measurement experiments at least three times, and each measure-
ment experiment lasts for five minutes. We also measure network
performance when the UE remains stationary, which is considered our
baseline for comparing results measured in different mobility patterns.
To ensure a fair comparison with other mobility patterns, we randomly
select five locations on the road in the stationary case and conduct
measurement experiments twice on each location while standing still.

It is worth noting that the type of application may have an impact on
user mobility [40]. In most mobility scenarios, users are typically pas-
sengers (i.e., on a bike, bus, tram, car). Therefore, the mobility patterns
n these scenarios are only affected by road traffic and their inherent

characteristics. For users who are walking, their mobility pattern may
be influenced by the type of application. For example, when wearing a
ead-mounted display to experience immersive applications, users tend
o have shorter stride length, greater stance time, and higher speed vari-
bility [41]. Instead, our measurement study focuses on applications for
martphones, which typically do not have significant impacts on user

mobility. Therefore, our user mobility follows conventional behaviors
(3.9 km/h of average speed and 0.75 m of stride length for walking in
ur study). We are interested in exploring the QoE of VR applications

under diverse mobility patterns in the future.

5. Network performance

While user equipment (UE) is moving, its surrounding network
environment keeps changing. In this section, we examine how different
mobility patterns, including walking, biking, driving, bus, and tram,
affect the 5G network performance. Specifically, we first explore how
the elementary mobility features, including distance from the base
tation, signal strength, obstruction, and moving velocity, influence 5G
etwork performance such as throughput and round-trip time (RTT).
hen, we measure the overall network performance for both 4G and
G under the above-mentioned mobility patterns. Finally, we study the
mpacts of congestion control algorithms on 5G network performance
nder various mobility patterns.

5.1. The impact of mobility

While a UE is moving, its surrounding network environment keeps
changing: (1) The UE may be gradually moving away from or getting
closer to the serving BS. (2) The propagation path of radio between
the UE and the base station may be obstructed by an obstacle hard to
penetrate. These will affect the strength/quality of the cellular signal
or cause connection handovers. Besides the environment, the moving
speed can also influence network performance by varying the bit error
rate as well as the handover frequency. In this section, we examine
how these factors affect the 5G performance. Note that the following
measurement experiments are conducted in 4G/5G networks of 𝑃𝑈 ,
since we find that only 𝑃𝑈 provides 5G services at the specific locations
where these experiments are conducted.

Distance from the base station. We first investigate the impact of
the distance between a UE and the serving base station. We pick three
spots whose distances from the base station are 100 m, 200 m, and
300 m, respectively. Each spot and the base station are in a straight
line. At each spot, we measure the RTT with ping every second for
60 s and repeat this experiment 10 times for both 4G and 5G. It is worth
noting that, to avoid unnecessary handovers when gradually increasing
distance, we strive to conduct our experiment in a location where both

4G and 5G base stations are deployed as sparsely as possible.

5 
Fig. 2. Impact of distance on 5G/4G RTT.

Fig. 3. Impact of signal strength on 5G RTT.

Fig. 2 plots the CDF of all measurement results. We do not plot the
G RTTs with a 300 m distance in the figure because the connection

always switches to another cell as we increase the distance to 300 m.
This may seem counter-intuitive because typically 5G has a shorter
coverage range and thus should have switched earlier than 4G. Theoret-
ically, if there are only two adjacent 4G/5G base stations on the road, a
shorter range of 5G networks may lead to earlier handover. However,
in the real world, the current deployment of 5G base stations is not
as widespread as 4G. Consequently, there are fewer potential neighbor
cells for 5G to handover when compared to 4G. Furthermore, current
measurement studies [8,13] reveal that even in a densely deployed area
with full 5G coverage, 5G SA handover happens less frequently than 4G.
This contributes to 5G’s better robustness against poor signal quality
and strength, leading to less likely sensed neighbor cells and reduced
necessity of handovers [13].

As shown, 62.4% of the 5G RTTs are within 10 ms, and only a few
esults are greater than 20 ms. As the distance increases, higher RTTs
ppear more often. We attribute such a phenomenon to the change in
ignal strength. Specifically, the increase in the distance incurs signal

attenuation and more interference. Thus, we later study the impact of
signal strengths on network performance. 4G exhibits a similar pattern
but has a 3× higher average latency. Moreover, 79.8% of the 4G RTTs
range from 20 ms to 40 ms, which is unexpectedly more unstable in
comparison with 5G.

Signal strength. To study the impact of signal strength on 5G
RTT, we perform comparative measurements by standing near an open
window. We observe that the signal strength rapidly decreases when
we move away from the window. Thus, we conduct measurements
at different distances away from the window (i.e., 0 m, 1 m, 3 m).
The signal strengths at the three locations are good (above −80 dBm),
medium ([−95,−85]dBm), and poor (below −100 dBm), respectively.
We plot the 5G RTTs with different signal strengths in Fig. 3. As
shown, better signal strength brings lower RTTs in general. While 5G
RTTs perform similarly under good and medium signal strength, they
fluctuate widely under poor signal strength. It is worth mentioning that
high 5G RTTs (above 40 ms) in the case of poor signal strength perform
similar distribution to 4G RTTs in Fig. 2. Also, poor signal strength
leads to a long-tail latency distribution (up to 392 ms), which may hurt
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Fig. 4. Impact of signal strength on 5G throughput.

Fig. 5. Impact of obstruction on 5G/4G throughput.

the QoE of real-time applications like cloud gaming. We also study the
impact of signal strength on 5G throughput at the same experiment
location. The experiments are conducted in stationary state and no
handovers occur during the measurement experiments. As shown in
Fig. 4, we observe a generally decreasing trend in median throughput
s the signal strength becomes worse. Specifically, compared to good
ignal strength (above −80 dBm), the median 5G throughput under
edium strength ([−95,−85]dBm) only slightly decreases. However, it

ignificantly drops under a poor signal strength (below −100 dBm).
Obstruction. We then study the impact of obstruction on 5G/4G

throughput. We first select a spot with good signal quality and under
a clear line-of-sight (LoS) to perform throughput measurements as a
aseline. We park a car at the same spot and measure the throughput in
he car (backseat). Then we measure the throughput beneath a nearby
ree. As shown in Fig. 5, the 5G throughput beneath a tree is slightly

lower than that under clear LoS. However, the median 5G throughput
inside the car has a 34% drop compared to that under clear LoS.

We also study the impact of a building obstruction on throughput.
Firstly, we conduct an extensive investigation into whether 5G service
is available in a nearby building. We find that 5G service is unavail-
able, which indicates that 5G radio cannot penetrate buildings built
with concrete. However, smartphones are able to connect to the 5G
network near a transparent window or an open door. Thus, we conduct
throughput measurements at the door inside the building. As shown in
Fig. 5, the throughput inside the building is much smaller than that
outside the building. We repeat the same throughput measurements for
4G. The results show that the impact of obstruction on 4G throughput
is limited.

Moving velocity. We also study the impact of moving velocity
n network performance. We measure the throughput and RTT at
ifferent velocities on a straight road. We conduct measurements while
riving a car in different velocity levels, including slow (∼3 km/h),
edium (∼20 km/h), and fast (∼50 km/h). The UEs (i.e., smart-
hones) are placed on the car dashboard under the windshield to avoid
bstruction.

We plot the CDF of the RTTs with all velocity levels. As shown
n Fig. 6, in the 5G network, high RTTs appear more frequently at a
igher velocity, especially at the fast level. While in 4G, we do not
6 
Fig. 6. Impact of moving velocity on 5G/4G RTT.

Fig. 7. Impact of moving velocity on 5G/4G throughput.

Fig. 8. 5G throughput trace snippet while driving.

Fig. 9. CDF of 5G/4G throughput with different moving velocities.

observe such a phenomenon, which implies that 5G is more sensitive
to moving velocity than 4G. Fig. 7 shows the 4G/5G throughput at
different velocities. 5G throughput has a significant degradation when
the moving velocity increases, while 4G throughput has little variation.
Specifically, the median 5G throughput decreases by 72.7% when the
user drives fast, compared with the throughput while driving at a
medium speed.

We then take a further look into the throughput traces. Fig. 8 plots
a four-minute trace of the downlink throughput while driving. We can
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Table 3
Average throughput recovery after intra-NR handovers.

Time after handover (s) 0 1 2 5 10

Throughput Recovery (%) 59.4 64.0 91.6 101.2 102.5

Fig. 10. A 5G throughput trace during mobility with handover events (denoted by red
otted vertical lines) and varying signal strength.

Fig. 11. Impact of signal strength on 5G throughput during mobility.

see that the 5G throughput is often less than 100Mbps, which is at the
same level as the 4G throughput. Such performance degradation can
be attributed to frequent handovers or sometimes even unsuccessful
handovers (i.e., connection establishment failures). Fig. 9 plots the CDF
of the throughput. It shows more clearly that 5G throughput is often
less than 100Mbps when the user is driving at a high speed, which is
even comparable to 4G’s performance.

Handover. User mobility can cause handovers between base sta-
ions, which may also affect network performance. We then study its
mpact on 5G throughput. Fig. 10 shows a throughput trace during
riving with handover events (red dotted line), and varying signal
trength, i.e., RSRP. We can observe from Fig. 10 that the throughput
ignificantly decreases when handovers occur. For example, at 10s and
1s, the handover between 5G base stations (i.e., intra-NR handover)

results in a 59.3% and 59.2% throughput decrease, respectively. While
at 35s, we observe 5G falls back to 4G with an inter-RAT handover,
thus the throughput drops to far below 100Mbps. By calculating the
average throughput drop following handovers, we find that for intra-
NR handovers (5G to 5G) lead to a 40.6% decrease in throughput. In
contrast, for inter-RAT handovers (5G to 4G), the throughput experi-
ences a more substantial drop of 80.1%. From Fig. 10, we also observe
that the throughput does not immediately recover after an handover.
Therefore, we further analyze how quickly the throughput can recover
following an intra-NR handover, as shown in Table 3. The throughput
7 
shows a subsequent recovery of 64.0%/91.6%/101.2%/102.5% after
1/2/5/10 seconds post-handover when compared to the throughput
efore the handover. It is worth noting that the throughput does
ot immediately recover after an handover due to TCP’s slow start
echanism. By contrast, we cannot observe an obvious causal re-

ationship between the throughput and varying signal strength. For
nstance, the throughput of 5G during 25–35s is comparable to that
f 40–50s, while the former’s signal strength is much lower by up to
5dBm as shown in Fig. 10. Meanwhile, the throughput during 10–

35s fluctuates widely while the signal strength generally remains the
ame level. Therefore, a poor signal strength does not always mean
 low throughput. Fig. 11 presents the 5G throughput under varying

signal strengths during mobility. As shown, the average 5G throughput
gradually declines with deteriorating signal strength. However, when
ontrasted with stationary scenarios (Fig. 4), 5G throughput suffers

greater fluctuations under medium signal strengths (i.e., [−80,−100])
during mobility. This can be attributed to additional mobility factors
uch as handovers and speed, indicating that the throughput in mobile
cenarios is influenced by a combination of various mobility factors
nd their intricate interplay. This suggests that relying solely on signal
trength may not be sufficient for network providers to make effective
esource scheduling decisions. In comparison, as handovers have a
ore significant impact on network performance, it is promising to

mprove network performance and application QoE by handover-aware
ethods (detailed discussion in Section 7.2).

Summary. 5G networks generally achieve lower and more stable RTT
compared to 4G, along with higher throughput. Nevertheless, the perfor-
mance of 5G networks can be influenced by various mobility factors. For
instance, poor signal strength can lead to a long-tail latency distribution,
while fast-moving velocity can cause significant throughput degradation.
In these network environments, 5G performance may even deteriorate to
levels comparable to 4G. Consequently, such high fluctuations can result in
inconsistent application QoE.

5.2. Performance under mobility

Notably, the wireless channel quality may affect network perfor-
mance. For instance, poor wireless channel quality can degrade the
data rate and increase the bit error rate. To avoid the noise from
wireless signal quality variation, all our comparative measurements
under different mobility patterns are carried out on a road with a
generally stable Reference Signal Received Power (RSRP) level of [−80,
−60]dBm.

End-to-end network throughput. We first measure the end-to-
nd throughput under different mobility patterns. We utilize iperf to
ransfer bulk data between the client and server with TCP. To obtain

measurement results more precisely and fully utilize the available band-
width as possible, we use multiple concurrent TCP connections (i.e., 8
connections) for throughput measurement instead of a single connec-
tion which is more sensitive to packet loss and network congestion. To
avoid the impact of TCP slow-start, we discard the measurement results
or the first 10 s.

We plot the 4G/5G up-/down-link throughput of provider 𝑃𝑀 and
𝑃𝑈 in all considered mobility patterns. As shown in Fig. 12, the 5G
downlink throughput of 𝑃𝑀 can reach up to 400Mbps, but fluctu-
ates violently and sometimes can have extremely poor performance
(i.e., even close to zero), especially when driving or taking a tram. The
4G downlink throughput has a median of 60Mbps, which is much lower
han that of 5G. Fig. 13 depicts the results for 𝑃𝑈 , where the 5G down-
ink throughput can reach up to 500Mbps, but also exhibits significant
luctuations. Furthermore, the downlink throughput of 𝑃𝑈 presents a
ore obvious dropping trend than that of 𝑃𝑀 as the mobility pattern

hanges. Specifically, the median 5G downlink throughput decreases
by approximately 30% when taking a bus/tram compared to slower

mobility patterns such as walking (∼4 km/h) or biking (∼18 km/h),
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Fig. 12. Downlink throughput of provider 𝑃𝑀 in different mobility patterns.

Fig. 13. Downlink throughput of provider 𝑃𝑈 in different mobility patterns.

Fig. 14. Uplink throughput of provider 𝑃𝑀 in different mobility patterns.

Fig. 15. Uplink throughput of provider 𝑃𝑈 in different mobility patterns.

while the throughput drops by 45% when driving due to the higher
moving velocity.

Figs. 14 and 15 show the 4G/5G uplink throughput under all
he mobility patterns. From Fig. 14 we observe that the 5G uplink

throughput of 𝑃𝑀 can reach up to 90Mbps, but it fluctuates violently
and sometimes becomes extremely poor, similar to the trend shown in
he downlink throughput. The 4G uplink throughput has a median of
0Mbps, which is much lower than that of 5G. The results imply that 5G
etworks cannot provide sufficient uplink throughput for applications
 h

8 
Fig. 16. End-to-end RTT of provider 𝑃𝑀 in different mobility patterns.

Fig. 17. First three-hop RTT of provider 𝑃𝑀 in different mobility patterns.

that need to upload huge amounts of data, e.g., 360-degree 4K/8K
ive streaming as 120Mbps [42]. Also, the 5G uplink throughput tends

to decrease as the mobility pattern changes. Specifically, the median
drops from 55Mbps to 25Mbps when switching from the stationary
scenario to the driving scenario. Consequently, this presents additional
challenges for offloading machine learning (ML) models in driving sce-
narios, such as deep neural network (DNN) inference for autonomous
driving tasks. Fig. 15 shows the results for 𝑃𝑈 , where the uplink
hroughput of both 4G and 5G outperforms that for 𝑃𝑀 . However, it
till deteriorates when taking a bus/tram or driving a car. Specifically,
he 5G uplink throughput presents significant fluctuations under these
obility patterns especially when driving, compared to slower ones like
alking. Moreover, the median decreases by 23.5% when driving. We

an also observe a slight downward trend for 4G uplink throughput.
End-to-end network latency. We measure the end-to-end latency

by round-trip time (RTT) between the 5G smartphone and the cloud
server using the ping tool. Fig. 16 shows the end-to-end RTT for
𝑃𝑀 . We can observe significant fluctuations in both 4G and 5G RTTs,
ranging from as low as 30 ms to sometimes exceeding 120 ms. 5G
RTT is slightly lower than 4G RTT for the first three mobility patterns
(i.e., stationary, walking, and biking), which can be attributed to 5G’s
ower radio access network (RAN) latency. Specifically, 5G is supposed

to provide ultra-low RAN latency on the order of 1 ms, while it is
n the order of 10 ms for 4G [43]. However, for the latter three

mobility patterns (i.e., bus, tram, and driving), 5G RTT even grows
to be slightly higher than 4G RTT. On the one hand, under these
mobility patterns, radio signals are more likely to be interfered due to
their high speed and vehicle body shell obstruction. Although the 5G
radio frequency in our measurements is sub-6 GHz, it is still ∼ 2× that
of 4G, leading to potentially severer signal attenuation. On the other
hand, 5G also suffers higher handover latency compared to 4G, due
to additional control signaling overhead [11] and longer processing
time [13]. Especially under high mobility, the handover process is

ore likely to fail due to unsuccessful Random Access Channel (RACH)
rocedures, which further increases the overhead and prolongs the
andover latency.
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Fig. 18. End-to-end RTT of provider 𝑃𝑈 in different mobility patterns.

Fig. 19. First three-hop RTT of provider 𝑃𝑈 in different mobility patterns.

To take a further look at RAN latency, we break down the end-to-
end latency. For a better comparison of 4G/5G RAN latency, we use
raceroute to find the nearest gateway and shorten the entire end-

o-end path to the first few hops so that we can eliminate the latency
f the wide area network between the gateway and the cloud server.
he first two hops are not available due to the restriction of the mobile
arrier. Thus, we use the IP address of the third hop from the UE for
TT measurements with ping.

Fig. 17 shows that, surprisingly, the first three-hop RTT of both 4G
nd 5G remains high and unstable. The wired network between the

UE and the cloud server, with possible network congestion along the
path, does not contribute significantly to the high end-to-end latency.
Specifically, the first three-hop RTT is lower than the end-to-end RTT
by only around 20 ms, which should be the latency of the wide area
network. For stationary mobility, while the first three-hop RTTs of 5G
present a lower median than the ones of 4G, it sometimes becomes
higher than 4G. This implies an unstable 5G RAN of 𝑃𝑀 , but we are
unable to confirm the cause due to the black box of the providers’
network. Overall, the RTT of the first three hops is still high and far
from the expectation for 5G RAN latency.

However, such an abnormal phenomenon does not occur in the
etworks of 𝑃𝑈 . We repeat the latency measurement experiments the
ame as above. Fig. 18 shows the end-to-end RTT for 𝑃𝑈 under different

mobility patterns. The results of both 4G and 5G are much lower than
hat for 𝑃𝑀 . Although 5G RTTs present an increasing trend, its median
emains below 40 ms while the median of 4G RTTs is generally 10 ms
igher than that of 5G in all mobility patterns. We also measure the
irst third-hop RTT of 𝑃𝑈 . As shown in Fig. 19, the latency of the

first three hops is much smaller (i.e., usually below 20 ms) and more
stable. For 4G, this RTT ranges from 20 ms to 60 ms. The stable lower
RAN latency of 𝑃𝑈 is attributed to the flattened architecture of 5G
i.e., part of cellular core network functions sinks to gNB so as to

minimize processing latency) [11]. As the mobility pattern changes,
oth the 4G and 5G RTTs increase. The median 5G RTT even increases
y more than 3× while driving, compared to the stationary scenario.
t is worth noting that this RTT exhibits significant fluctuations when
aking a tram, compared to taking a bus with similar moving velocity.
 h

9 
Fig. 20. 5G downlink throughput under different congestion control algorithms.

Table 4
Packet loss rate of 5G traces in different mobility patterns.

Mobility Pattern Mean (%) 95th (%)

Stationary 0.4 1.2
Walking 0.9 1.7
Biking 1.1 1.9
Bus 1.3 4.5
Tram 1.5 2.9
Driving 1.7 3.4

We attribute this to the tram’s thicker body shell, which may cause
signal quality degradation and thus higher latency (Section 5.1).

Packet loss. To further study the cause of throughput differences
between different mobility patterns, we examine the packet loss rate
PLR) of traces under all mobility patterns. We obtain the PLR by
omparing the packet traces captured on the client and server. Table 4

shows the mean and 95th percentile PLR of all traces collected under
different mobility patterns. Generally, the PLR increases as the mobility
pattern changes. However, we observe the 95th percentile PLR is
remarkably high when taking a bus, likely due to its high connection
density. For instance, when the bus arrives at the station and a group
of people get on the bus, they share the bandwidth resource. Conse-
quently, the available bandwidth of users on the bus rapidly drops,
leading to sudden network congestion and increased packet loss. Such
a high packet loss rate can degrade the experience of various real-time
applications that rely on low latency and reliable data transmission.

Summary. 5G offers substantially higher throughput than 4G, but it
also exhibits significant fluctuations. Specifically, both downlink and uplink
throughput experience considerable degradation under mobility patterns with
high velocity. 5G RTT also increases in these scenarios due to not only high
velocity but also obstruction of the vehicle body shell. Moreover, the high
connection density experienced when taking a bus may cause abrupt network
congestion and increased packet loss. Consequently, all these performance
degradations can undermine the consistent and smooth experience of mobile
applications.

5.3. The impact of congestion control

We also study the 5G network performance when using different
congestion control algorithms (CCA) as well as how mobility affects
the performance of these CCAs. We consider four typical CCAs, namely
capacity-probing based BBR, loss-based Cubic and Reno, and delay-
based Vegas. We switch the congestion control algorithm by configuring
the Linux kernel modules of the cloud server. We measure the downlink
throughput of these CCAs under various mobility patterns. All measure-
ments with different CCAs are carried out repeatedly with the same
measurement method described in Section 4.1.

Fig. 20 plots the downlink throughput of all four CCAs under various
mobility patterns. We can observe that BBR obviously outperforms
the other three CCAs, as it can achieve a downlink throughput of
up to 700Mbps while the others fall below 400Mbps. Cubic provides

igher downlink throughput than Reno and Vegas. Vegas can only
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Table 5
Packet loss rate of different congestion control algorithms in the driving scenario.

CCA Vegas BBR Reno Cubic

Mean (%) ∼ 0 0.2 0.5 1.1

reach up to 200Mbps, which performs the worst among all CCAs. The
wo loss-based CCAs (i.e., Cubic, Reno) cannot sufficiently utilize the
ctual high bandwidth of the 5G networks due to falsely reducing the

congestion window when packet loss happens even if it is not caused
y congestion. As the mobility pattern changes, the above observations
till hold. For example, BBR still outperforms all other CCAs, and Vegas
s still the worst algorithm. However, the downlink throughput of all
CAs gradually decreases as the mobility pattern changes. For BBR, the
edian downlink throughput drops by 33% when driving in contrast to

he stationary scenario. Moreover, the downlink throughput sometimes
drops to zero, which means the connection breaks and the UE cannot
receive data anymore. Such a phenomenon happens more often while
users are driving or taking a bus/tram.

We also study the packet loss rate (PLR) of different CCAs under
all mobility patterns. We obtain the PLR by comparing the packet
races captured on the client and server. Table 5 shows the mean PLR
f different CCAs in the driving scenario, while the results of other

mobility patterns present a similar trend. In general, packet loss appears
the most while using Cubic in all mobility patterns, followed by Reno.
The PLR of BBR is close to zero when users are stationary, walking,
or biking. Although packet loss occurs slightly more frequently with
BBR when driving, the PLR is still much lower than that of Cubic or
Reno. This can be attributed to BBR’s rapid adaptation to fluctuations
in available bandwidth, facilitated by its efficient probing method.
In contrast, loss-based CCAs fail to achieve such swift adaptation, as
they only reduce the congestion window after packet loss has already
occurred. The PLR of Vegas remains close to zero in all mobility
patterns because it maintains a low throughput and seldom causes
network congestion.

Summary. BBR consistently outperforms the other three CCAs (i.e., Cu-
ic, Reno, Vegas) across all mobility patterns. Specifically, BBR can achieve
2 × 5G downlink throughput compared to Cubic, while also maintaining
ower PLR at the same time thanks to its efficient probing method. However,
the PLR tends to increase when users are driving.

6. Application performance

In this section, we evaluate the QoE of the applications (i.e., cloud-
based AR, cloud gaming, and video streaming) under 5G as well as 4G
for comparison.

6.1. Cloud-based AR

We first focus on measuring the QoE of cloud-based AR, defined by
the end-to-end latency. Specifically, we develop an application, where
the client sends video frames to the cloud server continuously. The
erver applies deep learning to detect objects in the frames and returns
he detection result to the client for rendering. We use OpenCV and the
tate-of-the-art object detection framework YOLO [38] to implement
he cloud-side software components. The client sends video frames at
0FPS to the cloud server via a TCP connection. The received frames

are put in a processing buffer at the server for detection and the results
are returned to the client immediately with another TCP connection.

As shown in Fig. 21, the end-to-end latency of cloud-based AR over
G is only a little smaller than that over 4G (e.g., 11.4% smaller median
or the stationary scenario), which hints that 5G does not improve
he QoE of AR as much as expected (e.g., below 20 ms for immersive
xperience). Moreover, the end-to-end latency slightly increases as the
obility pattern changes for 5G. In contrast, the latency increases more

nder 4G. m

10 
Fig. 21. End-to-end latency of cloud AR in different mobility patterns.

Fig. 22. End-to-end latency breakdown of driving traces.

To understand the contribution to the network latency, as shown
in Fig. 22, we break down the end-to-end latency into frame sending
atency (i.e., ‘‘send’’), frame receiving latency (i.e., ‘‘receive’’), detec-
ion latency (i.e., ‘‘detect’’), and propagation latency (i.e., the latency
etween frame sending and receiving, plus the latency of returning the
esult), using the logs from both the client and server. The breakdown
ints that the propagation latency (e.g., more than 40 ms) and the
etection latency (e.g., around 46 ms) are both the bottlenecks in
mproving the QoE of the cloud-based AR system.

Because of the higher uplink throughput of 5G, we observe much
ighter network congestion compared to 4G, which has a significant effect

on application QoE. (1) Latency: the receiving latency (i.e., the time
between the first packet and the last packet of a frame received by
the server) over 5G networks is only a quarter of that over 4G, since
the packets of a frame over 4G experience severe network congestion
and take a long time to finally arrive at the server successively. (2)
Throughput of frames: we observe from the client logs that the actual
sending rate is slightly lower than 10FPS while transmitting frames
over 4G. While the frames are sent at a fixed frame rate, poor network
conditions can cause network congestion and make the sending socket
buffer filled immediately, thus delaying the transmission of frames from
he client to the server. By contrast, we observe that the FPS can reach
bove 30 over 5G based on our further measurement.

We also perform measurements with higher sending rates (i.e., 20
and 30FPS). Fig. 23 shows that as the sending rate increases, the
end-to-end latency over 4G increases drastically since a higher send-
ing rate makes the network more congested. However, the latency
over 5G remains almost unchanged as a result of its sufficient uplink
throughput.

Summary. Currently, 5G does not improve the QoE as much as expected.
The propagation latency in 5G is comparable to that in 4G, which indicates
providers are supposed to achieve lower 5G RTT for immersive experience.
Additionally, the detection latency on the server is also a bottleneck. There-
ore, it is necessary to optimize the detection models and develop pipelining
ethods to take full advantage of 5G performance.
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Fig. 23. End-to-end latency at different sending rates.

Fig. 24. Response delay of cloud gaming in different mobility patterns.

6.2. Cloud gaming

We measure the QoE of cloud gaming using the same metric as
the response delay mentioned in [35]. This metric captures the time
interval between a user submitting a command and the corresponding
in-game action appearing on the screen. Specifically, in our experi-
ments, the client starts the command by clicking a checkbox in the
game (pingus [44]), and the server responds by rendering and returning
a frame with the previous checkbox as selected. Moreover, we simu-
late users’ clicks with the Android command-line tool input, which
periodically triggers the click events in the game. To make it easy to
evaluate the response delay, we enable the touch pointer position to
set clicks visible while recording the screen with the built-in recording
feature. When a click event is finished, the touch pointer on the screen
disappears. After capturing the screen, we use FFmpeg [36] to extract
ll frames from the recorded video, and then utilize OpenCV [37] to
igure out the frames with touch pointers and selected checkboxes.
he first frame after the touch pointer disappears is marked as 𝐹𝑐 𝑙 𝑖𝑐 𝑘𝑒𝑑 ,
nd the first frame with the selected checkbox as 𝐹𝑐 ℎ𝑒𝑐 𝑘𝑒𝑑 . Finally, we

calculate the time between 𝐹𝑐 𝑙 𝑖𝑐 𝑘𝑒𝑑 and 𝐹𝑐 ℎ𝑒𝑐 𝑘𝑒𝑑 to obtain the response
delay.

Fig. 24 shows that the response delay of cloud gaming is much
lower over 5G compared with that over 4G under all mobility patterns.
Specifically, the results over 4G are usually higher than 140 ms, which
fails to support real-time games. Although 5G has reduced the delay by
around 50%, it is still far from the latency requirement of cloud gaming
(i.e., 20–30 ms [45]). We also observe extremely high response delay
(e.g., 250 ms) sometimes, which is 10× the latency requirement of cloud
gaming. Note that the game logic also has an impact on the response
delay, i.e., complex game logic can further increase this delay.

Summary. 5G reduces the response delay by around 50% compared to
4G. However, the improved result is still far from the latency requirement
of cloud gaming.
11 
6.3. 8K video streaming

Internet traffic is increasing very rapidly, and video streaming ac-
ounts for the dominant part [42]. Nowadays, more and more stream-

ing service providers adopt adaptive bitrate (ABR) streaming to deliver
ideo content to users. However, since the network performance of 5G
luctuates violently, it is unclear whether current ABR algorithms can
rovide expected QoE for 4K/8K video streaming over 5G. To solve this
uzzle, we measure the QoE of 8K adaptive bitrate streaming over 5G

under various mobility patterns. We use Dash.js [39], a reference client
implementation of the MPEG-DASH standard, to stream video from our
cloud server over 4G or 5G to the client. Dash.js also provides useful
APIs for examining the QoE of adaptive streaming.

We study several ABR algorithms, including buffer-based BB [46]
and BOLA [47], rate-based RB and FESTIVE [48], control-theoretic
MPC, and robustMPC [49]. We evaluate the QoE of adaptive video
streaming with various metrics, such as bitrate, buffer occupancy as
well as QoE reward used in FastMPC [49]. We prepare a four-minute 8K
video and encode it into 6 tracks with different bitrates using FFmpeg
and libx264. The bitrate of the highest video quality is 160Mbps.
We then measure the QoE of adaptive video streaming over 4G and
5G networks. Each experiment of different ABR algorithms is repeated
for 5× in all mobility patterns including stationary (S), walking (W),
biking (B), driving (D), bus (BS), and tram (T). We present the mea-
surement results in Figs. 25 and 26 (S4 means that the measurement is
conducted over 4G networks in the stationary state).

We observe higher QoE rewards under 5G than 4G as expected,
due to the higher throughput of 5G to support higher bitrate. The QoE
reward of 4G is often below zero (e.g., fastMPC). This is because video
streaming over 4G may suffer a long rebuffering time (0.5-3s, as shown
in Fig. 27), while that over 5G below 0.5s. In fact, the buffer length
grows faster under 5G due to its sufficient throughput, which benefits
users with a good QoE for a long time, even when they enter areas with
bad network conditions, without stuttering or resolution degradation.

lso, BOLA outperforms other ABR algorithms when streaming over 5G
n all mobility patterns. All of the ABR algorithms rarely select the best
ideo quality (i.e., 160Mbps) over 5G, which hints that 5G cannot well
upport 8K video streaming currently.

Summary. 5G can support higher video bitrates compared to 4G but cannot
support 8K yet, which may necessitate the higher throughput provided
y mmWave 5G. In terms of ABR algorithms, BOLA outperforms other
algorithms in all mobility patterns when streaming over 5G.

7. Improving 5G application QoE under mobility

This section provides some insights on improving 5G applications
QoE under mobility scenarios, to bridge the gap between wishes and
reality of 5G applications.

7.1. Network-aware route planning

Current navigation applications mostly rely on the length and road
raffic of roadways to recommend the route, without considering the
vailability and performance of 5G networks. However, recommending
outes with good network conditions is an urgent demand to improve
he QoE of 5G applications under mobility, e.g., in-car video streaming
nd cloud gaming.

Here we implement a prototype of a network-aware route planning
system. The system consists of three components, i.e., network map
construction, application QoE estimation, and network-aware route
planning. We next introduce the role of each component and the
implementation respectively in the following.

Network map construction. To make the system network aware,
we first need to integrate 5G network information (e.g., RSRP, band-
width, latency) into the geographic map. In our system, we construct
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Fig. 25. Average QoE reward of video streaming in different mobility patterns.
Fig. 26. Bitrate selection of video streaming in different mobility patterns.
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Fig. 27. Rebuffering time of fastMPC over 4G in different mobility patterns.

Table 6
QoE penalty of routes.

Coverage RSRP (dBm) Penalty

Good [−80, −40) 0
Fair [−90, −80) 1
Bad [−100, −90) 2
No coverage [−140, −100) 3

the network map based on an open-source geographic map OSM [50]
nd a 5G dataset [11]. Specifically, we incorporate the 5G network

dataset into the geographic map by mapping the measured network
points to the nearest road segment according to their GPS coordinates.

Application QoE estimation. Based on the network map, we then
estimate the application QoE on each road segment for future route
planning. We take bandwidth-intensive applications as an example,
whose QoE typically depends on throughput. As poorer signal strength
correlates with lower average throughput statistically (Fig. 11), lead-
ing to QoE degradation, here we estimate the QoE penalty based on
signal strength for simplicity in the prototype design. Moreover, signal
strength is much easier to measure and collect than throughput in
the wild. For a certain road segment, the total penalty is calculated
according to the following formula: 𝑃 =

∑𝑛
𝑖=1 𝑝𝑖
𝑛 × 𝑑, where 𝑃 is the

otal penalty of the road and 𝑝𝑖 is the penalty of a sample point on the
oad. The penalty of a sample point is defined by its measured RSRP
alue, as shown in Table 6. And 𝑑 is the distance of the road. Finally,
12 
Table 7
Characteristics of routes.

Characteristics Blue route Green route

Distance (m) 384 386
Duration (s) 276.5 277.9
Total penalty 789.8 364.1

we recommend routes with the least QoE penalty using the routing
engine. It is worth mentioning that the above QoE penalty formula
s just a basic model and does not hinder the effectiveness evaluation
f our network-aware route planning system, given the substantial
ifference in network performance across different routes. For accurate
oE estimation in real-world systems, more sophisticated estimation
odels for application QoE are essential, which necessitate additional
etwork metrics and in-depth application-specific knowledge. We will
urther discuss the challenges of QoE estimation later.
Network-aware route planning. Given the estimation of applica-

ion QoE on each road segment, network-aware route planning can be
chieved by utilizing common shortest path algorithms. Compared to

traditional route planning problems that focus on travel distance and
duration, our system regards application QoE as the weight of each
road. Specifically, we utilize an open-source routing engine OSRM [51]
for route planning, which employs the Contraction Hierarchies (CH)
algorithm [52] to find the shortest path. We modify the configuration
of the routing engine (via a Lua script [53]) to use customized weight
(i.e., the estimated QoE penalty) instead of distance for each road
segment. When receiving a request with the starting and target location,
the routing engine first needs to compute the weight of each road
egment. To estimate the QoE on each road segment, the routing engine

queries network information from a PostgreSQL database (i.e., our
network map with 5G data) and then computes the QoE penalty by the
forementioned formula. Finally, it finds the shortest path using the CH
lgorithm.
Performance evaluation. We then conduct a case study to evaluate

the effectiveness of our network-aware route planning system. We
choose a pair of starting and target locations and then use the current
navigation algorithm and our network-aware route planning system to
recommend the best route respectively.
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Fig. 28. Recommended routes of the case study and its 5G coverage.

Fig. 28(a) shows two alternative recommended routes for the same
starting and target location, with the 5G network coverage on the
road as depicted in Fig. 28(b). The blue route is recommended for the
shortest distance by the current navigation algorithm, while the green
route is recommended for the best application QoE by our network-
aware route planning system. As shown in Table 7, although the
distance and duration of the green route are slightly longer than the
blue route, it offers much better network conditions than the blue route
(∼2× penalty). Obviously, the green route can provide much better
application QoE and should be recommended for users. Therefore,
network-aware route planning can improve the QoE of 5G applications
effectively.

Potential challenges and future research directions. While our
proposed network-aware route planning system can significantly en-
hance the QoE of 5G applications, it also presents several challenges
and requires further exploration.

First, network congestion may occur when multiple users are rec-
ommended to the same path. An intuitive approach to avoid this
congestion is adapting recommended routes according to real-time
network conditions (e.g., available bandwidth, latency) on the road,
as current navigation applications do when traffic jams occur. How-
ever, it is challenging to construct a large-scale real-time network
map, which requires joint efforts among network providers, service
providers, and users. Specifically, it needs collaborative crowdsourcing
measurements with both users and network providers to collect net-
work information [9]. While users contribute UE-side data, network
providers provide their knowledge about 5G network as well as user
data usage. Furthermore, application developers or service providers
become able to access network information from network providers via
the 5G network exposure function (NEF) [54]. However, while the NEF
provides network information that can be leveraged for developers, it
is important to note the exposure of network information should avoid
any data privacy concerns.

Second, it is non-trivial to estimate application QoE based on net-
work QoS, according to varying specific requirements for different
applications. For example, the QoE of bandwidth-intensive applications
(e.g., video streaming) typically depends on network throughput, while
that of real-time applications (e.g., cloud gaming) puts more empha-
sis on network latency. Furthermore, better network QoS does not
always translate to a proportional improvement in application QoE.
For instance, the marginal improvement in perceived video quality
may decrease at higher throughput. Additionally, the complex inter-
play between application behavior and network protocol makes QoE
estimation even harder. Thus, developers should carefully utilize their
application-specific knowledge to ensure an accurate QoE estimation.

Furthermore, network-aware route planning also poses new chal-
lenges for route planning algorithms. While considering application
QoE as the weight of each road, it might make traditional shortest path
algorithms ineffective sometimes. For example, the QoE of adaptive
video streaming is typically affected by video bitrate and stall time.
And the video stall time experienced on the current road is significantly
influenced by the total duration of video chunks in the buffer, which is
13 
Fig. 29. Average bitrate and rebuffering time of RB and HO-aware RB.

buffered on the previously traveled road. Therefore, the QoE on the
current road is affected by not only the network conditions on the
current road but also the ones on the previous road. These dependencies
between roads can invalidate the optimal substructure property, which
is a fundamental requirement for traditional route planning or shortest
path algorithms.

7.2. Handover-aware application adaptation

User mobility can incur handovers, which have a significant impact
on network performance and application QoE. When a handover oc-
curs, the connection between a UE and the serving base station breaks.
Therefore, applications’ data transmission is disrupted until a new con-
nection to the target base station is established, leading to significant
QoE degradation. We take adaptive video streaming as an example. If
the client requests a high bitrate video chunk before a handover, it may
suffer a prolonged downloading time due to subsequent throughput
reduction caused by the handover, leading to potential video stalls and
degraded QoE.

Currently, applications typically adapt to varying network con-
ditions according to end-to-end throughput/latency or application-
specific metrics (e.g., buffer occupancy in adaptive video streaming).
However, these adaptation methods are reactive, as they adjust ap-
plication behavior only after performance degradation is observed,
compromising the time efficiency and effectiveness. To address the
above issue, we propose a handover-aware adaptation method based
on handover prediction. We take adaptive video streaming as a case
study. First, our method predicts whether handover will occur in
the next prediction window according to measured historical signal
strengths [8,55]. Then, it estimates the subsequent throughput follow-
ing the handover. Based on the estimated throughput in the future, our
method select a maximum bitrate that can avoid video stalls to ensure
a smooth streaming experience. Compared to classic ABR algorithms,
our method can achieve early adaptation prior to potential throughput
degradation, and thus reap the opportunity for avoiding unnecessary
stalls and maintaining higher application QoE.

We then evaluate the performance of our method using throughput
trace-driven emulation as in [56]. We modify the rate-based (RB)
algorithm to integrate our handover-aware method and compare their
performance. Fig. 29 shows the average bitrate and rebuffering time
of RB algorithm and our method (i.e., HO-aware RB). As shown, our
method effectively reduces the average rebuffering time by 21.9%
while maintaining comparable bitrate levels.

7.3. Mobility-aware edge resource adaptation

Our measurement results indicate that the QoE of 5G applications
can be bottlenecked by the backbone network when communicating
with remote cloud servers (e.g., high AR latency presented in Fig. 22).
While edge computing is expected to improve application QoE due to
its proximity to users, the QoE can be still affected by varying network
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Table 8
Resources and pricing of different functions.

Specification Function 1 Function 2
Memory Size (MB) 128 512
Processing Latency (ms) 48 12
Pricing (×10−9$/ms) 2.1 8.3

Table 9
SLO violation rate and cost of different resource employment methods.

Metric Fixed-Low Fixed-High Our method

SLO Violation Rate (%) 11.7 0.3 0.3
Total Cost (×10−6$) 3.78 14.94 5.04

performance during mobility. Specifically, the end-to-end application
latency consists of the network latency across the network path and the
processing latency at edge servers. While network latency can be un-
stable during mobility as depicted in Fig. 6, it leaves less time for edge
servers to process requests, given a specific end-to-end latency require-
ment. This poses a challenge in effectively utilizing edge computing
resource. On one hand, limited computing resource may struggle to
meet latency requirements when network latency unexpectedly spikes
during mobility. On the other hand, deploying excessive computing re-
source may result in wastage of both resources and costs. Therefore, we
propose an adaptive mobility-aware edge resource adaptation method
to guarantee satisfactory end-to-end latency by mitigating the above
latency variability with appropriate resources. Our proposed method
dynamically employs increased computing resources when the current
resources cannot meet the latency requirement during mobility.

We evaluate the effectiveness of the proposed method with our
ollected network traces. The network latency between the mobile
evice and the edge servers is emulated based on our collected network
races. We use an event processing application as in [57], which is

implemented by an AWS Lambda function where you only pay for the
omputing resources and time you actually use [58]. In AWS Lambda,

the allocated resources scales linearly with the selected memory size
of functions. We assume that there are two available functions with
different memory sizes in the edge servers. The detailed specifications
of the functions are listed in Table 8. We compare the performance
of our method with two baselines, consistently selecting a function
with either low or high memory size, denoted as Fixed-Low and Fixed-
High, respectively. Table 9 shows the SLO violation rate and total cost
of different selection methods. Given the SLO of 100 ms, Fixed-Low
results in a high violation rate of 11.7%. On the other hand, Fixed-
High brings the violation rate down to 0.3%, yet leading to a fourfold
total cost. In contrast, our adaptive method can maintain the same
SLO guarantee as Fixed-High, while significantly reducing the cost by
66.3%. The evaluation results indicate that our method is promising to
improve application performance during mobility with adaptive edge
resources.

Determining the most suitable edge resource involves accurately
formulating the relationship between the mobility and the network
erformance, as well as profiling processing latency. Yet, this task is
hallenging due to the substantial searching space constituted by a va-
iety of mobility patterns and highly heterogeneous edge servers [59],

thus hindering effective edge resource adaptation significantly.

8. Future work

We discuss the limitations and future work of our measurement
ork in this section.
Sub-6 GHz vs mmWave. While our measurement study focuses

on sub-6 GHz 5G networks, we are also interested in exploring the
performance of mmWave 5G and its impact on application QoE under
various mobility patterns in future work. Here, we briefly discuss the
potential implications of mmWave 5G on our findings. Specifically,
 &

14 
compared to sub-6 GHz 5G, mmWave 5G is expected to (1) offer
significantly higher throughput, (2) exhibit similar network latency,
(3) experience more pronounced fluctuations in network throughput
and latency due to its greater fragility to obstructions, and (4) have
horter coverage per base station. As a result, while bandwidth-hungry
pplications in the eMBB scenario may benefit from improved QoE,
he increased network fluctuations could lead to highly inconsistent
oE. For real-time applications in the URLLC scenario, mmWave may

not significantly enhance their QoE, underscoring the need to reduce
latency in both the RAN and core networks. Additionally, in mobility
cenarios, as studied in this work, the fragility to obstructions and

shorter coverage of mmWave may present new challenges in main-
aining a reliable connection. We believe these implications present
ntriguing avenues for future work.
5G Advanced and 3CC. To the best of our knowledge, while new

network features like 3CC provided by 5G-Advanced may improve
network performance, they are still in initial deployment and have not
een widely commercially deployed yet [60]. Moreover, the majority

of off-the-shelf smartphones still cannot support those advanced net-
work features including 3CC. Therefore, we believe our measurement
study can better reflect the perceived 5G performance of most existing
smartphones. We are very interested in studying the performance of
5G-Advanced under various mobility patterns in the future.

Impact of physical layer metrics on application QoE. While we
easured the impact of physical layer metrics on network performance,

it is also interesting to study their respective impacts on applications
QoE. For example, it is unclear whether ‘‘poor average channel quality’’
and ‘‘good but unstable channel quality’’ have the same impact on
the application layer. We believe that the effects of these two types
of channel quality can vary depending on the specific requirements
of different applications. For instance, ‘‘good but unstable channel
quality’’ often leads to frequent data retransmissions due to a high
bit error rate when channel quality deteriorates. This significantly
affects the QoE for latency-sensitive applications by increasing tail
latency, as illustrated in Fig. 3 in Section 5.1. However, for bandwidth-
ungry applications, this type of channel quality may have a lesser
mpact, as these applications can mitigate temporary quality degrada-

tion through content prefetching (e.g., buffering in video streaming).
n the other hand, ‘‘poor average channel quality’’ tends to have a

more significant impact on bandwidth-hungry applications compared to
latency-sensitive ones. This is because bandwidth-hungry applications
demand more network capacity, while poor channel quality fails to
provide consistently sufficient throughput as demonstrated in Fig. 4
in Section 5 We are very interested in further exploring the impact of
hysical layer metrics on applications QoE in the future.

9. Conclusions

In this paper, we conduct a comprehensive cross-layer measurement
tudy of current commercial 5G networks with typical 5G applications

under various mobility patterns. Considering the requirements of sta-
ility and continuity of applications, current 5G networks still cannot
ustain high application QoE. Our measurement results show that the

achievable application QoE under current commercial 5G networks falls
behind the requirements imposed by these applications. We further
provide three insights on improving the QoE of these 5G applications:
network-aware route planning, mobility-aware application adaptation,
and locality-based edge server selection.
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